1.High-intensity intermittent exercise regulates oxidative stress and improves endothelial progenitor cell function in patients with essential hypertension
Jixin ZHI ; Tiantian WANG ; Shuang REN ; Chenyu WANG
Journal of Environmental and Occupational Medicine 2025;42(2):179-187
Background Vascular endothelial damage associated with endothelial progenitor cell dysfunction is considered as an initiating step of hypertension and target organ damage, in which oxidative stress plays a key role. High-intensity intermittent exercise is an effective prevention and treatment method of various chronic diseases; however, little attention has been paid to its effects and mechanisms on endothelial progenitor cells. Objective To observe the effect of high-intensity intermittent exercise on the function of endothelial progenitor cells in patients with hypertension and explore the mechanism of oxidative stress. Methods A total of 60 patients with essential hypertension were randomly divided into a control group and an exercise group. The control group received conventional drug treatment (including diuretics, calcium blockers, and beta-blockers), and the exercise group performed high-intensity intermittent exercise for 8 weeks (3 times·week−1) in addition to the treatment plan of the control group. Before and after intervention, brachial artery flow-mediated vasodilation (FMD) was used to evaluate vascular endothelial function; venous blood was sampled to perfrom circulating endothelial progenitor cell counts; endothelial progenitor cells were cultured in vitro, and the modified Boyden chamber assay and Matrigel lumen formation assay were used to detect their migration and tube formation ability, superoxide fluorescent anion probe method to detect reactive oxygen species levels, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining method to detect cell apoptosis, Western blotting to determine protein expression of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2, NADPH oxidase 4, and superoxide dismutase. Results Four patients (13.3%) in the control group and 2 patients (6.7%) in the exercise group dropped out; the completion rate of the exercise group's training plan was 94.9%. Compared with the before-intervention indicators, blood pressure decreased, brachial artery FMD increased, number of circulating endothelial progenitor cells increased, their migration and tube formation ability were enhanced, reactive oxygen species levels and cell apoptosis rate were reduced, NADPH oxidase 2 and NADPH oxidase 4 protein expressions were down-regulated, and superoxide dismutase protein expression was up-regulated in the after-intervention exercise group, and the differences were all statistically significant (P < 0.05). There was no significant difference in the above indicators in the control group between before and after intervention (P > 0.05). Conclusion High-intensity intermittent exercise regulates oxidative stress mediated by NADPH oxidase, improves endothelial progenitor cell function, and restores vascular endothelial disorders in patients with essential hypertension.
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.Oral Chinese patent medicines in treatment of dysmenorrhea and clinical research status: a scoping review.
Xiao-Jun BU ; Zhi-Ran LI ; Wen-Ya WANG ; Rui-Xue LIU ; Jing-Yu REN ; Lin XU ; Xing LIAO ; Wei-Wei SUN
China Journal of Chinese Materia Medica 2025;50(3):787-797
A scoping review was performed to systematically search and summarize the clinical research in the treatment of dysmenorrhea with oral Chinese patent medicines. The oral Chinese patent medicines for treating dysmenorrhea in three major drug lists, guidelines, and textbooks were screened, and the relevant clinical trials were retrieved from eight Chinese and English databases. The key information of the included trials was extracted and visually analyzed. A total of 50 Chinese patent medicines were included, among which oral Chinese patent medicines for the dysmenorrhea patients with the syndrome of Qi stagnation and blood stasis accounted for the highest proportion, and the average daily cost varied greatly among Chinese patent medicines. A total of 150 articles were included, involving 22 Chinese patent medicines, among which Guizhi Fuling Capsules/Pills, Sanjie Zhentong Capsules, and Dan'e Fukang Soft Extract were the most frequently studied. These articles mainly reported randomized controlled trial(RCT), which mainly focused on the comparison of the intervention effect between Chinese patent medicines combined with western medicine and western medicine alone, and the sample size was generally 51-100 cases. The high-frequency outcome indicators belonged to nine domains such as effective rate, adverse reactions, and laboratory examinations. This study showed that oral Chinese patent medicines had advantages in the treatment of dysmenorrhea, and the annual number of related clinical trials showed an overall growing trend. However, there were still problems such as insufficient safety information and vague description of traditional Chinese medicine(TCM) syndromes types in the instructions of Chinese patent medicines. The available clinical research had shortcomings such as uneven distribution of Chinese patent medicines, limited research scale, poor methodological rigor, and insufficient standardization of outcome indicators. In the future, it is necessary to deepen the development of high-quality clinical research and improve the contents of the instructions to ensure the effectiveness and safety of the clinical application of oral Chinese patent medicines in the treatment of dysmenorrhea.
Dysmenorrhea/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Female
;
Administration, Oral
;
Nonprescription Drugs/administration & dosage*
4.Investigation of therapeutic effects and mechanisms of Shenqi Buqi Granules on patients with chronic heart failure of Qi deficiency based on proteomics.
Zhi-Bo WANG ; Ying LI ; Lan MIAO ; Jun-Guo REN ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2025;50(11):3168-3179
This study explored the efficacy and mechanisms of Shenqi Buqi Granules in treating chronic heart failure(CHF) of Qi deficiency using proteomics and bioinformatics methods. A total of 18 healthy participants(health group) and 19 patients with Qi deficiency-type CHF(experimental group) were enrolled and treated with Shenqi Buqi Granules for 12 weeks. Clinical indicators, including Qi deficiency scores, complete blood count, biochemical parameters, lipid profiles, and cardiac function, were collected from pre-and post-experimental groups. Serum proteomics analysis was performed. Differential proteins were screened through differential analysis and K-means clustering. Further analyses, including subcellular localization, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and protein-protein interaction(PPI) network construction, were conducted to identify pathways and proteins associated with Shenqi Buqi Granules treatment. Spearman correlation analysis focused on proteins most correlated with the core phenotype of CHF of Qi deficiency. The results show that Shenqi Buqi Granules treatment reduced Qi deficiency scores and brain natriuretic peptide levels of pre-experimental group. A total of 1 594 proteins were quantified in the proteomics analysis, with 98 proteins showing differential expression between healthy group and experimental group before and after treatment. Subcellular localization analysis revealed 6 protein sources, while KEGG pathway enrichment highlighted biological processes including angiogenesis, immune inflammation, calcium homeostasis, cytoskeletal regulation, protein synthesis, and energy metabolism. Core genes identified included CD34, CSF1, CALM1, CALML3, PPP1CA, PFN1, and 3 ribosomal large subunit proteins. Correlation analysis between core proteins and Qi deficiency scores revealed that CD34(r=-0.67, P<0.05) and PPP1CA(r=0.62, P<0.01) were most strongly associated with Qi deficiency scores. This study suggests that Shenqi Buqi Granules improves Qi deficiency scores and CHF symptoms by regulating angiogenesis, immune inflammation, calcium homeostasis, cytoskeletal regulation, protein synthesis, and energy metabolism. CD34 and PPP1CA are identified as core proteins involved in the therapeutic effects of Shenqi Buqi Granules on Qi deficiency.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Heart Failure/metabolism*
;
Male
;
Female
;
Proteomics
;
Middle Aged
;
Qi
;
Aged
;
Protein Interaction Maps/drug effects*
;
Adult
;
Chronic Disease
5.Posterior medial branch block for persistent pain after percutaneous vertebral augmentation in osteoporotic vertebral fractures.
Zhe-Ren WANG ; Ren YU ; Chun-de LU ; Zhi-Yuan XU ; Bin WU ; Cheng NI
China Journal of Orthopaedics and Traumatology 2025;38(11):1145-1150
OBJECTIVE:
To evaluate the short-and medium-term efficacy of posterior medial branch block in the treatment of persistent pain after percutaneous vertebral augmentation.
METHODS:
From January 2018 to January 2023, a total of 1, 062 patients with osteoporotic vertebral compression fractures underwent percutaneous vertebral augmentation. Among them, 32 elderly patients who experienced persistent low back pain after surgery and subsequently received posterior medial branch block and cryoablation were included. Six patients died during follow-up, leaving 26 patients for final analysis (1 male, 25 females). The mean age was (82.96±5.66) years (ranged, 76 to 94 years). The mean body mass index was (23.76±3.08) kg·m-2(ranged 18.1 to 27.2 kg·m-2). The bone mineral density T-value ranged from -2.5 to -4.3 with a mean of (-3.09±0.56). The mean volume of bone cement injected was 6.00 (5.38, 7.00) ml. Fracture locations were T11 (2 cases), T12 (7 cases), L1 (10 cases), L2 (6 cases), and L3 (1 case). The mean interval from vertebral augmentation to block treatment was (7.12±2.22) months (rangd 6 to 12 months). The vertebral augmentation procedures were percutaneous kyphoplasty(PKP) in 12 cases and percutaneous vertebroplasty (PVP) in 14 cases. At the 2nd week, 3rd month, and 6th month after the block, the numerical rating scale(NRS), Oswestry disability index(ODI), patient satisfaction, and pain relief rate at the 6th month were evaluated. Relationships between pain relief rate at the 6th month after the last treatment and possible influencing factors were analyzed.
RESULTS:
Compared with X-ray films after percutaneous vertebral augmentation, the X-ray films before block showed an increase in kyphotic angle and vertebral compression rate, with statistically significant differences(P<0.05). At the 2nd week, 3rd month, and 6th month after posterior medial branch block and cryoablation, NRS and ODI scores were significantly lower than before the block(P<0.05). Among the 26 patients, 5 received additional cryoablation. At the 6th month after the last treatment, 19 patients reported excellent or good satisfaction. Univariate binary Logistic analysis showed all P>0.05, and no independent factor affecting final satisfaction or pain relief at 6 months after the last treatment was identified.
CONCLUSION
Posterior medial branch block(with cryoablation) can effectively improve short-and medium-term symptoms and function in patients with persistent axial low back pain after percutaneous vertebral augmentation for osteoporotic vertebral fractures.
Humans
;
Male
;
Female
;
Aged
;
Spinal Fractures/surgery*
;
Aged, 80 and over
;
Osteoporotic Fractures/surgery*
;
Vertebroplasty/adverse effects*
;
Nerve Block/methods*
6.A novel arterial coupler with non-return snap-fit connection approach optimized arterial end-to-end anastomotic technique: An experimental study.
Hong-Bo GUO ; Mo-Fei WANG ; Ren-Qi YIN ; Kang-Kang ZHI
Chinese Journal of Traumatology 2025;28(1):13-21
PURPOSE:
Hand-sewn anastomosis as the gold standard of vascular anastomosis cannot fully meet the requirements of vascular anastomosis in speed and quality. Various vascular couplers have been developed to ameliorate this situation. Most of them are mainly used for venous anastomosis rather than arterial anastomosis. Although it is generally acknowledged that in almost all operations involving vascular reconstruction, it is the arteries that need to be anastomosed faster and more accurately and not the veins. A dedicated device is needed for creating arterial anastomosis in an easy, timesaving, less damaging but reliable procedure. Therefore, we plan to develop a novel arterial coupler device and test pre-clinical safety and effectiveness.
METHODS:
In this cohort study, the rationality of this novel arterial coupler was preliminarily tested by finite element analysis before it was manufactured. Several factors restrict the use of vascular couplers in arterial anastomosis, such as arterial eversion, fixation, etc. The manufactured arterial couplers underwent in vitro and in vivo experiments. In vitro, isolated arteries of beagles were anastomosed with the assistance of an arterial coupler, and the anastomosed arteries were evaluated through anti-traction tests. In animal experiments, the bilateral femoral arteries of 5 beagles served as a control group. After dissection, the femoral artery on one side was randomly selected to be anastomosed with a quick arterial coupler (QAC) (QAC group), and the femoral artery on the other side was anastomosed by the same person using an end-to-end suture technique with a 6-0 Prolene suture (suture group). The bilateral femoral arteries of 5 beagles were used for coupler-assisted anastomosis and hand-sewn anastomosis in vivo, respectively. Success rate, blood loss, anastomotic time, clamp time, total operation time, and patency rate were recorded. The patency of anastomosed arteries was assessed using vascular Doppler ultrasound, electromagnetic flowmeter, and pathological examination (6 weeks after surgery).
RESULTS:
As a novel arterial coupler, QAC was successfully designed and manufactured by using poly lactic-co-glycolic acid raw materials and 3-dimensions printing technology. Its rationality was preliminarily tested through finite element analysis and related mechanical analysis methods. The isolated arteries were successfully anastomosed with the assistance of QAC in vitro testing, which showed good anti-traction properties. In animal studies, QAC-assisted arterial anastomosis has superior profiles compared to hand-sewn anastomosis in anastomotic time (7.80 ± 1.41 vs. 16.38 ± 1.04 min), clamp time (8.80 ± 1.41 vs. 14.14 ± 1.57 min), and total operation time (46.64 ± 2.38 vs. 51.96 ± 3.65 min). The results of electromagnetic flowmeter, vascular Doppler ultrasound, and pathological examination showed that QAC-assisted anastomotic arteries were superior to hand-sewn arteries in terms of postoperative blood flow (16.86 ± 3.93 vs. 10.36 ± 0.92 mL/min) and vascular patency in 6 weeks after surgery.
CONCLUSION
QAC is a well-designed and easily maneuverable device specialized for end-to-end arterial anastomosis. Application of this device may decrease thermal ischemia time and improve the patency of anastomotic arteries, thus, improving outcomes.
Animals
;
Anastomosis, Surgical/instrumentation*
;
Dogs
;
Femoral Artery/surgery*
;
Vascular Surgical Procedures/instrumentation*
;
Finite Element Analysis
7.Wip1 Phosphatase Regulates Hematopoietic Function in Mouse Spleen.
Xiao-Ping REN ; Zhi-Lin CHANG ; Yi WANG ; Hui-Min ZHU ; Wen-Yan HE
Journal of Experimental Hematology 2025;33(5):1491-1498
OBJECTIVE:
To investigate the regulatory effect of Wip1 phosphatase on hematopoietic function in the mouse spleen.
METHODS:
Wip1 knockout mice were bred, and the effect of Wip1 deletion on the proportion and number of hematopoietic stem/progenitor cells, as well as their mature subsets in mouse spleen was detected by flow cytometry. The Proteome ProfilerTM antibody array was used to analyze the role of Wip1 deletion on the expression of inflammatory cytokines in CD45highCD11b+ myeloid cells sorted from mouse spleen.
RESULTS:
Wip1 deletion resulted in smaller size and significant reduction of cell number in the mouse spleen. The absolute numbers of hematopoietic stem/progenitor cells were decreased. Meanwhile, the absolute number of T and B lymphocytes also significantly declined. However, the proportion of erythroid progenitors and erythroid cells at various stage significantly increased, but the number of mature erythroid cells decreased. Furthermore, the myeloid cells and their subsets neutrophils, monocytes, CD45highCD11b+ and CD45lowCD11b+ were all reduced. CD45highCD11b+ myeloid cells displayed proinflammatory phenotype in the spleen.
CONCLUSION
Wip1 gene deletion impairs normal hematopoietic function in the mouse spleen, leading to a significant reduction of mature hematopoietic cells of various lineages, and proinflammatory phenotype in CD45highCD11b+ myeloid cells.
Animals
;
Mice
;
Spleen/cytology*
;
Mice, Knockout
;
Hematopoietic Stem Cells/cytology*
;
Myeloid Cells/cytology*
;
Protein Phosphatase 2C
;
Hematopoiesis
;
Flow Cytometry
8.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
9.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
10.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice

Result Analysis
Print
Save
E-mail