1.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
2.Research advances in brain aging and brain age prediction in a high-altitude hypoxic environment
Journal of Apoplexy and Nervous Diseases 2026;43(1):92-96
With the acceleration of global population aging, the assessment and prediction of brain aging have become an important research direction in neuroscience. Brain age, as an indicator for measuring the biological age of the brain, can be used to assess individual cognitive function and predict the risk of neurodegenerative diseases. Neuroimaging techniques can reveal the structure and functional state of the brain, providing an important basis for brain age prediction. The hypoxic environment at high altitudes may accelerate brain aging, and its neuroimaging features provide a unique perspective for assessing brain aging. This article reviews the latest research advances in brain aging and brain age prediction under a high-altitude hypoxia environment, with a focus on the construction of brain age prediction models, the application of sMRI/DTI/fMRI, and the impact of high-altitude hypoxia on brain structure, function, and mechanisms, in order to provide a reference and directions for future research.
Neuroimaging
3.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
4.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
5.Distribution characteristics, source apportionment, and health risk assessment of metals and metalloids in PM2.5 in a southern city in 2019
Yaxin QU ; Suli HUANG ; Chao WANG ; Jie JIANG ; Jiajia JI ; Daokui FANG ; Shaohua XIE ; Xiaoheng LI ; Ning LIU
Journal of Environmental and Occupational Medicine 2025;42(2):196-204
Background Metals and metalloids in fine particulate matter (PM2.5) may cause damage to the respiratory and circulatory systems of the human body, and long-term exposure is prone to causing chronic poisoning, cancer, and other adverse effects. Objective To assess the distribution characteristics of metals and metalloids in outdoor PM2.5 in a southern city of China, conduct source apportionment, and evaluate the associated health risks, thereby providing theoretical support for further pollution control measures. Methods PM2.5 samples were collected in districts A, B, and C of a southern China city, and the concentrations of 17 metals and metalloids were detected by inductively coupled plasma-mass spectrometry (ICP-MS). Pollution sources were assessed through enrichment factor and principal components analysis, and the main pollution sources were quantified using absolute principal component scores-multivariate linear regression (APCS-MLR). Health risks were evaluated based on the Technical guide for environmental health risk assessment of chemical exposure (WS/T777—2021). Results The ambient air PM2.5 concentrations in the city were higher in winter and spring, and lower in summer and autumn. The annual average concentrations of ambient PM2.5 in districts A, B, and C were 36.7, 31.9, and 24.4 μg·m−3, respectively. The ambient PM2.5 levels in districts B and C were below the second-grade limit set by the Ambient air quality standards (GB 3095—2012). The enrichment factors of cadmium (Cd), aluminum (Al), and antimony (Sb) were greater than 10, those of copper (Cu), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), and molybdenum (Mo) fell between 1 and 10, and those of manganese (Mn), vanadium (V), chromium (Cr), cobalt (Co), barium (Ba), beryllium (Be), and uranium (U) were below or equal to 1. The comprehensive evaluation of source analysis showed that the main pollution sources in districts A and C and the whole city were coal-burning. In district B, the main pollution source was also coal combustion, followed by industrial process sources and dust sources. The carcinogenic risks of As and Cr were between 1×10−6 and 1×10−4. However, the hazard quotients for 15 metals and metalloids in terms of non-carcinogenic risk were below 1. Conclusion Cr and As in the atmospheric PM2.5 of the city present a certain risk of cancer and should be paid attention to. In addition, preventive control measures should be taken against relevant pollution sources such as industrial emission, dust, and coal burning.
6.The Discipline Development of Traditional Chinese Medicine in the Context of Mutual Understanding of Civilizations
Yongyan WANG ; Yipin FAN ; Qiang LI ; Xinyu JI
Journal of Traditional Chinese Medicine 2025;66(1):2-5
The mutual learning between Chinese and Western civilizations today provides a broad perspective and new opportunity for the development of traditional Chinese medicine (TCM), fostering the interdisciplinary integration, fusion, and innovation of the discipline. The premise of mutual understanding of civilizations is uphold the principles of Chinese traditional scholarship and original thinking, overcome academic barriers and cognitive differences, and achieve the organic integration of knowledge systems and research methods. The development of TCM as a discipline should first be based on literature as a carrier to convey ideas and ensure the continuity of the academic tradition. Secondly, the discipline development should be guided by the unique, original thinking of TCM, accurately identifying the bottlenecks in its development, focusing on the key links for improvement, continuously exploring innovative academic paths, and striving to build a leading research platform. Finally, the cultivation of talents in the field of TCM discipline should focus on leading ones with international academic discourse power and influence, and establish an academic team with clinical thinking and interdisciplinary knowledge structure.
7.Availability and use of child safety seats among children aged 0-3 years
CHEN Bo ; WANG Xihui ; QIU Fengqian ; YU Yan ; GAO Shuna ; HE Lihua ; LI Weiyi ; JI Yunfang ; CHEN Weihua
Journal of Preventive Medicine 2025;37(1):21-25
Objective:
To investigate the availability and use of child safety seats among children aged 0-3 years, so as to provide the basis for improving riding safety for children.
Methods:
Parents of children aged 0-3 years in Huangpu District, Shanghai Municipality, were recruited using the stratified multistage random sampling method from May to July 2024. Demographic information, family travel patterns, the use of child safety seat and related health beliefs were collected using questionnaire surveys. Factors affecting the use of child safety seats were identified using a multivariable logistic regression model.
Results:
Totally 514 valid questionnaires were recovered, with an effective rate of 96.98%. The respondents included 122 fathers (23.74%) and 392 mothers (76.26%), with a median age of 34.00 (interquartile range, 5.00) years. There were 446 families equipping with child safety seats, accounting for 86.77%; and 169 families using child safety seats, accounting for 32.88%. Multivariable logistic regression analysis showed that the parents who had children aged >1-2 years (OR=0.597, 95%CI: 0.366-0.973), travelled 2-4 times per month (OR=0.359, 95%CI: 0.213-0.607) or once per month or less (OR=0.384, 95%CI: 0.202-0.729), and scored high in perceived barrier (OR=0.634, 95%CI: 0.486-0.827) were less likely to use child safety seats; the parents who had children with local household registration (OR=2.506, 95%CI: 1.356-4.633), travelled 5-<10 km (OR=1.887, 95%CI: 1.148-3.101) or ≥10 km (OR=2.319, 95%CI: 1.355-3.967), always wore seat belts (OR=2.342, 95%CI: 1.212-4.524), scored high in perceived susceptibility (OR=1.392, 95%CI: 1.091-1.778) and self-efficacy (OR=1.413, 95%CI: 1.156-1.727) were more likely to use child safety seats.
Conclusions
Equipping family cars with child safety seats and using them can prevent and reduce traffic injuries among children aged 0-3 years. It is recommended to strengthen publicity to promote the use of child safety seats.
8.Study on the pharmacological effects and mechanism of Gegen-Zhimu herb pair in preventing and treating Alzheimer's disease by UHPLC-Q/TOF-MS metabolomics strategy
Liang CHAO ; Hui WANG ; Shuqi SHEN ; Piaoxue YOU ; Kaihong JI ; Zhanying HONG
Journal of Pharmaceutical Practice and Service 2025;43(1):30-40
Objective To evaluate the efficacy of Puerariae lobatae radix (PLR) and Anemarrhenae Rhizoma (AR) in preventing and treating Alzheimer’s disease (AD) and explore its potential mechanism of action by LC-MS serum metabolomics strategy. Methods The AD rat model was established by administering aluminum chloride (AlCl3) and D-galactose (D-gal) for 20 weeks. The traditional Chinese medicine intervention group was given the PLR, AR, and PLR-AR extracts for 8 weeks by gavage. The model effect and efficacy were evaluated by Morris water maze test and biochemical indicators including SOD, NO, and MDA; Metabolomics research based on the UHPLC-Q/TOF-MS method was conducted, and relevant metabolic pathways were analyzed through the MetaboAnalyst online website. Results The learning and memory abilities of AD model rats were significantly decreased compared with the control group, and the levels of oxidative stress and lipid peroxides were significantly increased (P<0.05), while the SOD content was decreased considerably (P<0.01). The learning and memory abilities of AD model rats were improved, oxidative stress and lipid peroxidation levels were reversed, and serum SOD content was increased significantly after the intervention of PLR-AR, with better effects than single drugs. Through metabolomics, 70 differential metabolites were identified between the AD model group and the control group, mainly involving 10 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and unsaturated fatty acid biosynthesis, et.al. The intervention of PLR-AR could adjust 47 metabolites, with 20 metabolites showing significant differences (P<0.05). The significantly adjusted metabolites involve 6 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, et al. Conclusion The combination of PLR and AR could significantly improve the learning and memory abilities of AD rat models. The mechanism may be related to the improvement of oxidative stress and lipid peroxidation levels, the increase of serum SOD content, and the regulation of phenylalanine, tyrosine, and tryptophan biosynthesis pathways.
9.Mechanism of Modified Shaofu Zhuyutang in Treatment of Endometriosis Based on EGFR/PI3K/Akt Signaling Pathway
Yaling YANG ; Wanrun WANG ; Zuoliang ZHANG ; Xiangyu LIN ; Jiaxing WANG ; Cancan HUANG ; Xiujia JI ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):29-38
ObjectiveTo observe the effects of modified Shaofu Zhuyutang on key proteins of the epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in SD rats with endometriosis. MethodsAfter successful establishment of an endometriosis model in 60 female SD rats of SPF grade via the auto-transplantation method, the rats were randomly divided into a model group, modified Shaofu Zhuyutang high-, medium-, and low-dose groups, and a gestrinone group, with another 12 rats serving as a blank group. The blank and model groups were administered 10 mL·kg-1 normal saline, while the high-, medium-, and low-dose groups received 30, 15, and 7.5 g·kg-1 modified Shaofu Zhuyutang, respectively. The gestrinone group was administered 0.25 mg·kg-1 gestrinone suspension. After four weeks of treatment, uterine contractions were induced with 2 U of oxytocin, and the writhing response of rats was observed. After 24 h, the rats were euthanized, and the weight and volume of ectopic endometrial tissue were recorded. Hematoxylin-eosin (HE) staining was used to observe pathological changes in endometrial tissues, while the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to evaluate the apoptosis rate of endometrial tissues. Immunofluorescence was used to detect the relative expression areas of the B-cell lymphoma-2 gene-associated promoter (Bad) and B-cell lymphoma-2 (Bcl-2) proteins in endometrial tissues. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and EGFR were measured by enzyme-linked immunosorbent assay (ELISA). The relative protein expression levels of EGFR, PI3K, phosphorylated PI3K (p-PI3K), Akt, and phosphorylated Akt (p-Akt) in endometrial tissues were analyzed by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of EGFR, PI3K, and Akt. ResultsCompared with the blank group, the model group showed endometrial thickening, glandular and mesenchymal hyperplasia, a significant decrease in the relative expression area of Bad in ectopic endometrial tissues, a significant increase in the relative expression area of Bcl-2, and a significant reduction in the apoptosis rate as indicated by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly elevated (P<0.01). The relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were also significantly increased (P<0.01). Compared with the model group, the high- and medium-dose groups of modified Shaofu Zhuyutang and the gestrinone group exhibited reduced glandular and mesenchymal hyperplasia to varying degrees, with dilated glandular lumens. The number of writhing responses was significantly reduced, the latency to writhing response was significantly prolonged, and the weight and volume of ectopic endometrial tissue were significantly decreased. The relative expression area of Bad in ectopic endometrial tissue was significantly increased, the relative expression area of Bcl-2 was significantly decreased, and the apoptosis rate was significantly elevated as shown by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly reduced, and the relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were significantly decreased (P<0.05,P<0.01). ConclusionModified Shaofu Zhuyutang may exert therapeutic effects on endometriosis by interfering with key proteins of the EGFR/PI3K/Akt signaling pathway and inducing apoptosis in ectopic endometrial tissue.
10.Action mechanisms and application pathways of biomaterials in promoting corneal alkali burn repair
Hui XIAO ; Dongyan LI ; Jing JI ; Lizhen WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2162-2170
BACKGROUND:Traditional treatments for corneal alkali burns are limited,especially in controlling inflammation,preventing neovascularization,and inhibiting corneal scarring.Natural,synthetic,or composite materials provide a wide range of treatment options.However,the mechanism by which biomaterials promote corneal alkali burn repair has not yet been systematically understood. OBJECTIVE:To summarize the current research on biomaterials in promoting corneal alkali burn repair in and outside China,and review the mechanism and application of biomaterials in repairing corneal alkali burn. METHODS:The first author searched"cornea,alkali burn,amniotic membrane,hyaluronic acid,collagen,chitosan,polymer materials"as Chinese keywords and"amniotic membrane,hyaluronic acid,collagen,chitosan,polymer,cornea,alkali burn"as English keywords in PubMed,Web of Science,CNKI,and WanFang databases.According to inclusion and exclusion criteria,76 eligible articles were finally included for review. RESULTS AND CONCLUSION:(1)In the field of corneal alkali burn repair,biomaterials such as amniotic membrane,hyaluronic acid,collagen,chitosan,and degradable polymer materials have been widely studied and applied.Each of these biomaterials has its own characteristics,advantages,and disadvantages,and stands out in different aspects.(2)First and foremost,amniotic membranes are considered one of the most promising biomaterials due to their abundance of bioactive factors.They are biocompatible and can regulate the corneal inflammatory response.However,there are issues with donor shortages and susceptibility to infectious diseases.(3)Hyaluronic acid has good moisturizing properties and biocompatibility,and is able to improve the survival rate of corneal cells and increase corneal transparency.(4)The good biocompatibility and scaffold structure of collagen enable the promotion of corneal cell adhesion and proliferation,as well as the reconstruction of corneal tissue structure.(5)Chitosan is recognized for its good biocompatibility and degradability,making it suitable as a carrier for drug delivery and cell transplantation.(6)Degradable polymer materials have good controllability over degradation and can provide a good support and delivery platform for the repair of corneal alkali burns,but further research is needed on their stability and biocompatibility.(7)Overall,there is currently no single biomaterial that can completely address the repair problem of corneal alkali burns,and each biomaterial has its own specific application scenarios and limitations.(8)Future research directions should focus on further improving the properties and structure of biomaterials,exploring more effective combination applications,and deeply understanding the interaction mechanism between biomaterials and corneal tissue,in order to enhance the therapeutic effect of corneal alkali burns and the quality of life of patients.


Result Analysis
Print
Save
E-mail