1.Epidemiology and management patterns of chronic thromboembolic pulmonary hypertension in China.
Wanmu XIE ; Yongpei YU ; Qiang HUANG ; Xiaoyan YAN ; Yuanhua YANG ; Changming XIONG ; Zhihong LIU ; Jun WAN ; Sugang GONG ; Lan WANG ; Cheng HONG ; Chenghong LI ; Jean-François RICHARD ; Yanhua WU ; Jun ZOU ; Chen YAO ; Zhenguo ZHAI
Chinese Medical Journal 2025;138(8):1000-1002
2.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
3.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
4.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
5.Cytoplasmic and nuclear NFATc3 cooperatively contributes to vascular smooth muscle cell dysfunction and drives aortic aneurysm and dissection.
Xiu LIU ; Li ZHAO ; Deshen LIU ; Lingna ZHAO ; Yonghua TUO ; Qinbao PENG ; Fangze HUANG ; Zhengkun SONG ; Chuanjie NIU ; Xiaoxia HE ; Yu XU ; Jun WAN ; Peng ZHU ; Zhengyang JIAN ; Jiawei GUO ; Yingying LIU ; Jun LU ; Sijia LIANG ; Shaoyi ZHENG
Acta Pharmaceutica Sinica B 2025;15(7):3663-3684
This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression. VSMC-NFATc3 deletion reduced extracellular matrix (ECM) degradation and maintained the VSMC contractile phenotype. Nuclear NFATc3 targeted and transcriptionally upregulated matrix metalloproteinase 9 (MMP9) and MMP2, promoting ECM degradation and AAD development. NFATc3 promoted VSMC phenotypic switching by binding to eukaryotic elongation factor 2 (eEF2) and inhibiting its phosphorylation in the VSMC cytoplasm. Restoring eEF2 reversed the beneficial effects in VSMC-specific NFATc3-knockout mice. Cabamiquine-targets eEF2 and inhibits protein synthesis-inhibited AAD development and progression in VSMC-NFATc3-overexpressing mice. VSMC-NFATc3 promoted VSMC switch and ECM degradation while exacerbating AAD development, making it a novel potential therapeutic target for preventing and treating AAD.
6.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
7.Infrared Laser Stimulation of Purkinje Cells Primarily Depends on TRP Channel Activation.
Bin-Bin DONG ; Chen WANG ; Wan-Qi HUANG ; Yu-Peng BIAN ; Jun LIU ; Wei CHEN ; Lin ZHOU ; Ying SHEN ; Luxi WANG
Neuroscience Bulletin 2025;41(7):1261-1266
8.Association between the ratio of dietary vitamin A to body weight and hypertension in children
Chinese Journal of School Health 2024;45(2):267-272
Objective:
To explore the relationship between the ratio of dietary vitamin A (VitA) to body weight and hypertension among children, so as to provide a reference for blood pressure control through dietary nutritional interventions and childhood hypertension prevention.
Methods:
Utilizing the baseline survey and followup sample data from the Healthy Children Cohort established in urban and rural areas of Chongqing from 2014 to 2019, structured quantitative dietary questionnaire and selfdesigned questionnaire were used to investigate the information of dietary intake and socioeconomic characteristics of 15 279 children, as well as blood pressure, height, weight measurement. The ratio of dietary VitA to body weight was divided into four groups based on quartiles [≤P25(Q1), >P25~P50(Q2), >P50~P75(Q3), >P75(Q4)]. Generalized linear regression models and Logistic regression models were used to analyze the correlation between ratio of dietary VitA to body weight with blood pressure levels and prevalence of hypertension.
Results:
The results of the 2014 baseline survey indicated that, after adjusting for confounding factors such as demographic indicators and nutritional intake, significant differences were observed in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) among different groups categorized by the ratio of dietary VitA to body weight (F=157.57, 44.71, 95.92, P<0.01). The baseline ratio of dietary VitA to body weight in children exhibited a negative correlation with DBP, SBP and MAP at baseline and in 2019[baseline: β(95%CI)=-0.65(-0.89--0.42), -0.22(-0.42--0.01), -0.36(-0.56--0.16); 2019: β(95%CI)=-0.77(-1.34--0.19), -0.62(-1.21--0.02), -0.77(-1.34--0.19), P<0.05]. Compared to Q1 group, the risk of hypertension decreased among children in Q4 at baseline and followup in 2019 [OR(95%CI)=0.63(0.49-0.81), 0.18(0.08-0.42), P<0.01].
Conclusions
The ratio of dietary VitA to body weight is significantly negatively correlated with blood pressure levels among children, and dietary VitA deficiency is an independent risk factor for hypertension among children. Measures should be taken to actively adjust childrens dietary nutrition and reduce the risk of childhood hypertension.
9.Icariin ameliorates viral myocarditis by inhibiting TLR4-mediated ferroptosis
Wei Luo ; Yi Lu ; Jun-Hua Deng ; Peng Liu ; Yan Huang ; Wan-Xi Liu ; Chun-Li Huang
Asian Pacific Journal of Tropical Biomedicine 2024;14(3):106-114
Objective: To explore the mechanism by which icariin alleviates viral myocarditis. Methods: CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability, inflammation, and apoptosis. Moreover, the effects of icariin on ferroptosis and TLR4 signaling were assessed. After AC16 cells were transfected with TLR4 overexpression plasmids, the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated. Results: Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α, IL-1β, IL-6, and IL-18. Flow cytometry revealed that icariin decreased apoptosis rate, and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes. Additionally, it suppressed ferroptosis including lipid peroxidation and ferrous ion, as well as the TLR4 signaling. However, TLR4 overexpression abrogated the modulatory effects of icariin. Conclusions: Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis. Further animal study is needed to verify its efficacy.
10.Experimental study of en-bloc resection of bladder tumors by transurethral single-port laparoscopy in vivo animal models
Weifeng WANG ; Jun ZHANG ; Jiansheng WAN ; Siming LIU ; Yuan ZOU ; Shaoqiu ZHENG ; Jidong HAO ; Guoqiang LIAO ; Hua GONG ; Lei OUYANG
Journal of Modern Urology 2024;29(2):179-182
【Objective】 To explore the feasibility of en-bloc resection of bladder tumors by flexible cystoscope combined with laparoscopic instruments through urethra and to provide reference for the clinical application of this technique. 【Methods】 Self-designed and processed transurethral single-hole PORT and Olympus electronic cystoscope were used as observation mirror; Φ1.8 mm soft grasper, tissue scissors, electric hook, and ultrasonic scalpel were used as instruments; the porcine bladder was used as a model.The PORT was placed through the urethra, and the cystoscope was inserted to observe the inner wall of the bladder and the condition of the mucosa.After the lesion site was identified in the bladder cavity, the soft grasper was inserted to pull the mucosa to be removed, which was then fixed with tension at the target position to maintain a satisfactory feild of view.The surgeon held the cystoscope in the left hand, and operated the laparoscopic instruments into the bladder cavity through the PORT with the right hand.Observing with the cystoscope and lifting and pulling the mucosa with the grasper, the surgeon simulated the cutting and pushing actions to realize the en-bloc resection of the lesioned mucosa. 【Results】 The mucosa at 4 different locations were successfully resected on 2 in vitro porcine bladder models. 【Conclusion】 The in vitro experiments show that the combination of flexible electronic cystoscope and laparoscopic instruments achieves synergistic effects in en-bloc resection of bladder tumor by transurethral single-hole laparoscope without additional iatrogenic bladder injury caused by percutaneous bladder incision.This method is feasible in the treatment of bladder tumors, and has the potential of clinical application after further optimization.


Result Analysis
Print
Save
E-mail