1.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
2.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
3.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
4.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
5.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
6.Research of injury mapping relationship of lumbar spine in reclined occupants between anthropomorphic test devices and human body model.
Yu LIU ; Jing FEI ; Xin-Ming WAN ; Pei-Feng WANG ; Zhen LI ; Xiao-Ting YANG ; Lin-Wei ZHANG ; Zhong-Hao BAI
Chinese Journal of Traumatology 2025;28(2):130-137
PURPOSE:
To judge the injury mode and injury severity of the real human body through the measured values of anthropomorphic test devices (ATD) injury indices, the mapping relationship of lumbar injury between ATD and human body model (HBM) was explored.
METHODS:
Through the ATD model and HBM simulation, the mapping relationship of lumbar injury between the 2 subjects was explored. The sled environment consisted of a semi-rigid seat with an adjustable seatback angle and a 3-point seat belt system with a seatback-mounted D-ring. Three seatback recline states of 25°, 45°, and 65° were designed, and the seat pan angle was maintained at 15°. A 23 g, 47 km/h pulse was used. The validity of the finite element model of the sled was verified by the comparison of ATD simulation and test results. ATD model was the test device for human occupant restraint for autonomous vehicles (THOR-AV) dummy model and HBM was the total human model for safety (THUMS) v6.1. The posture of the 2 models was adjusted to adapt to the 3 seat states. The lumbar response of THOR-AV and the mechanical and biomechanical data on L1 - L5 vertebrae of THUMS were output, and the response relationship between THOR-AV and THUMS was descriptive statistically analyzed.
RESULTS:
Both THOR-AV and THUMS were submarined in the 65° seatback angle case. With the change of seatback angle, the lumbar spine axial compression force (Fz) of THOR-AV and THUMS changed in the similar trend. The maximum Fz ratio of THOR-AV to THUMS at 25° and 45° seatback angle cases were 1.6 and 1.7. The flexion moment (My) and the time when the maximum My occurred in the 2 subjects were very different. In particular, the form of moment experienced by the L1 - L5 vertebrae of THUMS also changed. The changing trend of My measured by THOR-AV over time can reflect the changing trend of maximum stress of L1 and L2 of THUMS.
CONCLUSION
The Fz of ATD and HBM presents a certain proportional relationship, and there is a mapping relationship between the 2 subjects on Fz. The mapping function can be further clarified by applying more pulses and adopting more seatback angles. It is difficult to map My directly because they are very different in ATD and HBM. The My of ATD and stress of HBM lumbar showed a similar change trend over time, and there may be a hidden mapping relationship.
Humans
;
Lumbar Vertebrae/injuries*
;
Finite Element Analysis
;
Biomechanical Phenomena
;
Manikins
;
Spinal Injuries/physiopathology*
7.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
8. MW-9, a chalcones derivative bearing heterocyclic moieties, ameliorates ulcerative colitis via regulating MAPK signaling pathway
Zhao WU ; Nan-Ting ZOU ; Chun-Fei ZHANG ; Hao-Hong ZHANG ; Qing-Yan MO ; Ze-Wei MAO ; Chun-Ping WAN ; Ming-Qian JU ; Chun-Ping WAN ; Xing-Cai XU
Chinese Pharmacological Bulletin 2024;40(3):514-520
Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.
9.Analysis of Morphologic Classification System for Acute Promyelo-cytic Leukemia and Its Correlation with Laboratory Tests and FLT3-ITD Mutation
Wan-Ting HE ; Jia-Qi CHEN ; Yu-Yue REN ; Yu-Juan GAO ; Hong-Xing LIU ; Wei WANG
Journal of Experimental Hematology 2024;32(5):1334-1342
Objective:To establish a morphologic classification system for characterizing blast cells in patients with acute promyelocytic leukemia(APL)and analyze the correlation of different APL morphologic characteristics with conventional tests and genetic variants.Methods:Based on the morphological characteristics of APL blast cells,a classification system of 14 categories was established to characterize the inter-and intra-individual cellular morphological heterogeneity of patients.The classification system was used for the morphological analysis of 40 APL patients,and the classification results were statistically analyzed with the patients'conventional test indexes and gene variant characteristics to analyze the correlation of different APL blast cell morphological features with conventional test indexes and gene variants.Results:In the FLT3-ITD mutation-positive group,there were significantly fewer cells with regular nuclear shape,hyper granularity,and missing Auer rods(category 1)than in the FLT3 mutation-negative group(P<0.05).The activated partial thromboplastin(APTT)was significantly longer in the group with regular nucleus compared to the group with irregular nucleus(P<0.05).In the hypo-granular group,the APTT was also significantly longer compared to the hyper-granular group(P<0.01),and the proportion of myeloid blast cells was relatively lower(P<0.05).The peripheral blood white blood cell counts,D-dimer,lactate dehydrogenase and proportion of bone marrow blast cells were significantly higher in the Auer rods(-)group than Auer rods increasing group(all P<0.05).Conclusion:The newly established morphologic classification system in this study can objectively characterize different types of APL blast cells,which helps to better assess the intra-and inter-individual heterogeneity of APL blast cells,and further use in accurately analyzing the correlation of morphological phenotypes with biological properties of APL.
10.Nutritional status of pediatric patients undergoing allogeneic hematopoietic stem cell transplantation
Mei YAN ; Wei-Bing TANG ; Yong-Jun FANG ; Jie HUANG ; Ting ZHU ; Jin-Yu FU ; Xiao-Na XIA ; Chang-Wei LIU ; Yuan-Yuan WAN ; Jian PAN
Parenteral & Enteral Nutrition 2024;31(5):257-261
Objective:To observe the changes in the nutritional status of pediatric patients after allogeneic hematopoietic stem cell transplantation(allo-HSCT)for one year,and to analyze the risk factors.Methods:We collected data from 88 pediatric patients who underwent allo-HSCT at the Department of Hematology and Oncology in Children's Hospital of Nanjing Medical University between May 2018 and November 2022.All pediatric patients underwent nutritional status analysis before transplantation,at enrollment,3 months,6 months and 1 year after allo-HSCT.Linear regression model was used to analyze the risk factors for growth rate.Results:The body mass index Z score(BMI-Z)before allo-HSCT was(0.096±1.349),and decreased to(-0.258±1.438)、(-0.715±1.432)、(-0.584±1.444)at enrollment,3 months,6 months after allo-HSCT,and(-0.130±1.317)at 1 year after allo-HSCT(P<0.001).There was no significant change in BMI-Z between pre-transplantation and 1 year after transplantation(P=1.000).Height for age Z score(HAZ)before transplantation was(0.137±1.305)and decreased to(-0.083±1.267)、(-0.221±1.299)、(-0.269±1.282)in 3 months,6 months and 1 year after allo-HSCT(P<0.001).Multivariate linear regression showed that age≥10 years old(P=0.015)and chronic graft-versus-host disease(cGVHD)(P=0.005)were independent risk factors for change in HAZ.Conclusion:The BMI-Z of pediatric patients treated with allo-HSCT returned to the pre-transplantation level after one year,while HAZ continued to decrease.Allo-HSCT may cause impaired growth rate in pediatric patients.Attention should be paid to HAZ changes in pediatric patients before and after allo-HSCT,especially in pediatric patients≥10 years old of age and those with cGVHD.Effective nutritional intervention should be provided in time.

Result Analysis
Print
Save
E-mail