1.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
2.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
3.Multi-gene molecular identification and pathogenicity analysis of pathogens causing root rot of Atractylodes lancea in Hubei province.
Tie-Lin WANG ; Yang XU ; Xiu-Fu WAN ; Zhao-Geng LYU ; Bin-Bin YAN ; Yong-Xi DU ; Chuan-Zhi KANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(7):1721-1726
To clarify the species, pathogenicity, and distribution of the pathogens causing the root rot of Atractylodes lancea in Hubei province, the tissue separation method was used to isolate the pathogens from root rot samples in the main planting areas of A. lancea in Hubei. Based on the preliminary identification of the Fusarium genus by the internal transcribed spacer(ITS) sequence, three housekeeping genes, EF1/EF2, Btu-F-FO1/Btu-F-RO1, and FF1/FR1, were amplified and sequenced. Subsequently, a phylogenetic tree was constructed based on these TEF gene sequences to classify the pathogens. The pathogenicity of these strains was determined using the root irrigation method. A total of 194 pathogen strains were isolated using the tissue separation method. Molecular identification using the three housekeeping genes identified the pathogens as F. solani, F. oxysporum, F. commune, F. equiseti, F. tricinctum, F. redolens, F. fujikuroi, F. avenaceum, F. acuminatum, and F. incarnatum. Among them, F. solani and F. oxysporum were the dominant strains, widely distributed in multiple regions, with F. solani accounting for approximately 54% of the total isolated strains and F. oxysporum accounting for approximately 34%. Other strains accounted for a relatively small proportion, totaling approximately 12%. The results of pathogenicity determination showed that there were certain differences in pathogenicity among strains. The analysis of the pathogenicity differentiation of the widely distributed F. solani and F. oxysporum strains revealed that these dominant strains in Hubei were mainly highly pathogenic. This study determined the species, pathogenicity, and distribution of the pathogens causing the root rot of A. lancea in Hubei province. The results provide a scientific basis for further understanding the root rot of A. lancea and its epidemic occurrence and scientifically preventing and controlling this disease.
Plant Diseases/microbiology*
;
Atractylodes/microbiology*
;
Phylogeny
;
Plant Roots/microbiology*
;
Fusarium/classification*
;
China
;
Virulence
;
Fungal Proteins/genetics*
4.Effect of interferon receptor 1 silenced human diploid MRC⁃5 cell line on replication of varicella⁃zoster virus
YANG Xiao ; JIANG Cheng han ; SUN Bo ; GU Tie jun ; WAN Ming ming ; SUN Jie ; DING Xue ; WANG Cen⁃rong ; ZHOU En⁃tong ; JIANG Hao ; SU Wei⁃heng
Chinese Journal of Biologicals 2023;36(1):21-25+31
Abstract:Objective To improve the replication level of varicella⁃zoster virus(VZV)in human diploid cell line MRC⁃5
and increase the yield of VZV vaccine by reducing the expression of interferon(IFN)related genes via optimizing the cell
line MRC⁃5. Methods Interferon receptor 1(IFNAR1)silenced MRC⁃5 cell line(MRC⁃5IFNAR1⁃)was constructed by
CRISPR/Cas9 gene editing technology,which was determined for the relative expression of IFNAR1 mRNA,and for those
of mRNA of IFN related genes IFNβ and OAS1 after VZV infection by qRT⁃PCR to evaluate the effect of gene silencing.
Gene mutation sequences were further identified by sequencing of the silenced sites. The replication of VZV in MRC⁃5 and
MRC⁃5IFNAR1⁃ cell lines was compared 168 h after VZV infection by using qRT⁃PCR and plaque formation unit(PFU)assay,
to evaluate the effect of MRC⁃5IFNAR1⁃cell line on VZV replication. Results The growth status of MRC⁃5IFNAR1⁃ cell line wasconsistent with that of MRC ⁃ 5 cells,and the relative expression of IFNAR1 mRNA decreased by 73%;The relative
expressions of IFNβ and OAS1 mRNA in MRC⁃5IFNAR1⁃ cell line were 61% and 90% lower than those in MRC⁃ 5 cells
respectively after VZV infection;In addition,168 h after VZV infection,the level of DNA replication and the titer of VZV
increased by 5. 7 folds and 4 folds respectively. Conclusion The successful establishment of MRC⁃5IFNAR1⁃ cell line may be a
potential scheme to increase the yield of vaccines based on human diploid cells,and provided a reference for expanding
production of VZV vaccine.
5.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
Animals
;
Male
;
Rats
;
Caspase 3/metabolism*
;
Collagen
;
Disease Models, Animal
;
Hypertension, Pulmonary/drug therapy*
;
Monocrotaline/adverse effects*
;
Panax notoginseng/chemistry*
;
Proliferating Cell Nuclear Antigen/pharmacology*
;
Pulmonary Arterial Hypertension
;
Pulmonary Artery/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Notch3/genetics*
;
RNA, Messenger
;
Saline Solution
;
Signal Transduction
;
Saponins/pharmacology*
6.Yinlai Decoction Protects Microstructure of Colon and Regulates Serum Level of D-Lactic Acid in Pneumonia Mice Fed with High-Calorie and High-Protein Diet.
Yun-Hui WANG ; He YU ; Tie-Gang LIU ; Teck Chuan KONG ; Zi-An ZHENG ; Yu-Xiang WAN ; Chen BAI ; Yu HAO ; Ying-Qiu MAO ; Jun WU ; Jing-Nan XU ; Li-Jun CUI ; Yu-Han WANG ; Yan-Ran SHAN ; Ying-Jun SHAO ; Xiao-Hong GU
Chinese journal of integrative medicine 2023;29(8):714-720
OBJECTIVE:
To investigate the effect of Yinlai Decoction (YD) on the microstructure of colon, and activity of D-lactic acid (DLA) and diamine oxidase (DAO) in serum of pneumonia mice model fed with high-calorie and high-protein diet (HCD).
METHODS:
Sixty male Kunming mice were randomly divided into 6 groups by the random number table method: normal control, pneumonia, HCD, HCD with pneumonia (HCD-P), YD (229.2 mg/mL), and dexamethasone (15.63 mg/mL) groups, with 10 in each group. HCD mice were fed with 52% milk solution by gavage. Pneumonia mice was modeled with lipopolysaccharide inhalation and was fed by gavage with either the corresponding therapeutic drugs or saline water, twice daily, for 3 days. After hematoxylin-eosin staining, the changes in the colon structure were observed under light microscopy and transmission electron microscope, respectively. Enzyme-linked immunosorbent assay was used to detect the protein levels of DLA and DAO in the serum of mice.
RESULTS:
The colonic mucosal structure and ultrastructure of mice in the normal control group were clear and intact. The colonic mucosal goblet cells in the pneumonia group tended to increase, and the size of the microvilli varied. In the HCD-P group, the mucosal goblet cells showed a marked increase in size with increased secretory activity. Loose mucosal epithelial connections were also observed, as shown by widened intercellular gaps with short sparse microvilli. These pathological changes of intestinal mucosa were significantly reduced in mouse models with YD treatment, while there was no significant improvement after dexamethasone treatment. The serum DLA level was significantly higher in the pneumonia, HCD, and HCD-P groups as compared with the normal control group (P<0.05). Serum DLA was significantly lower in the YD group than HCD-P group (P<0.05). Moreover, serum DLA level significantly increased in the dexamethasone group as compared with the YD group (P<0.01). There was no statistical significance in the serum level of DAO among groups (P>0.05).
CONCLUSIONS
YD can protect function of intestinal mucosa by improving the tissue morphology of intestinal mucosa and maintaining integrity of cell connections and microvilli structure, thereby reducing permeability of intestinal mucosa to regulate the serum levels of DLA in mice.
Mice
;
Male
;
Animals
;
Lactic Acid/pharmacology*
;
Intestinal Mucosa
;
Colon/pathology*
;
Dexamethasone/pharmacology*
;
Diet, High-Protein
;
Pneumonia/pathology*
7.The regulatory role of autophagy in rats lung ischemia/reperfusion injury.
Mao Lin HAO ; Guo Qiang LOU ; Xiu Jie LIU ; Wei QIAN ; Jia WANG ; Zhuo Lin ZHOU ; Wan Tie WANG
Chinese Journal of Applied Physiology 2021;37(4):385-388
Animals
;
Autophagy
;
Ischemia
;
Lung
;
Lung Injury
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
8.Effects and mechanisms of nitrogen application on stress resistance of Chinese materia medica.
Yang GE ; Sheng WANG ; Xiu-Fu WAN ; Chuan-Zhi KANG ; Chao-Geng LYU ; Wen-Jin ZHANG ; Tie-Lin WANG ; Qing-Jun YUAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1901-1909
Nitrogen fertilizers play an important role in the regulation of plant stress resistance. Impacts of nitrogen fertilizers on abiotic stress resistance and biotic stress resistance of Chinese materia medica(CMM) were summarized in this study. Adequate nitrogen application improves the abiotic stress resistance and weed resistance of CMM, however adverse effect appears when excess nitrogen is used. Generally, pest resistance decreases along with nitrogen deposition, while effects of nitrogen application on disease resistance vary with different diseases. Mechanisms underlying the impact of nitrogen fertilizers on plant stress resistance were also elucidated in this study from three aspects including physical defense mechanisms, biochemistry mechanisms and molecular defense mechanisms. Nitrogen availability modulates physical barrier of CMM like plant growth, formation of lignin and wax cuticle, and density of stomata. Growth of CMM promoted by nitrogen fertilizer may cause some decrease in pest resistance of CMM due to an increase in hiding places for pest along with plant growth. High ambient humidity caused by excessive plant growth facilitates the growth and development of CMM pathogen. Nitrogen application can also interfere with the accumulation of lignin in CMM which makes CMM more vulnerable to pest and pathogen attack. Stomatal closing delays due to nitrogen application is also a causal factor of increasing pathogen infection after nitrogen deposition. Biochemical defenses of plants are mainly achieved through nutrient elements, secondary metabolites, defense-related enzymes and proteins. Nutritional level of CMM and various antioxidant enzymes and resistance-related protein activities are elevated along with nitrogen deposition. These antioxidant enzymes can reduce the damage of reactive oxygen species content produced by plant in response to adversity and therefore enhance stress resistance of CMM. Researches showed that nitrogen application could also cause an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. Nitrogen-mediated molecular defense mechanisms includes multiple plant hormones and nitric oxide signals. Plant hormones related to plant defense like salicylic acid, jasmonic acid and abscisic acid can be modulated by nitrogen application. Negative effect of nitrogen deposition was found on salicylic acid accumulation and the expression of related plant disease resistance genes. However, jasmonic acid level can be elevated by nitrogen. Nitric oxide signals constitute an important part of nitrogen mediated defense mechanisms. Nitric oxide signaling is related to many aspects of plant immunity. The roles of nitrogen fertilizers in CMM stress resistance are complex and may vary with different CMM varieties and environments. Further studies are urgently needed to provide a comprehensive understanding of how to improve stress resistance of CMM by using fertilizers.
Abscisic Acid
;
China
;
Materia Medica
;
Nitrogen
;
Plant Growth Regulators
9.Effect of combined application of inorganic and organic fertilizers on growth and quality of Salvia miltiorrhiza.
Xiu-Fu WAN ; Sheng WANG ; Yan ZHANG ; Tie-Lin WANG ; Yang GE ; Su-Xia GAO ; Chuan-Zhi KANG ; Chao-Geng LYU ; Rui-Shan WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1927-1934
The study is aimed through field experiments to study the effect of combined application of organic and chemical fertilizers on the growth and quality of Salvia miltiorrhiza, provide ideas for reducing fertilization while increasing the efficiency as well as improving the quality of produces. The experiment included 6 treatments viz., no fertilization(CK), full application of chemical fertilizer(F), 25% orga-nic fertilizer with 75% chemical fertilizer(M25), 50% organic fertilizer with 50% chemical fertilizer(M50), 75% organic fertilizer with 25% chemical fertilizer(M75), and fully apply organic fertilizer(M100). The results showed that:(1)from the perspective of yield and economic benefits, M75 was the best and M100 second;(2)for effective components, the combined application of organic and chemical fertilizers increased the content of main water-soluble components and the total content of effective components, among which M25 and M50 were better.
Agriculture
;
Fertilizers/analysis*
;
Nitrogen
;
Salvia miltiorrhiza
;
Soil


Result Analysis
Print
Save
E-mail