1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis.
Ke-Xiang SUN ; Wei-Shan TAN ; Hao-Yue WANG ; Jia-Min GAO ; Shu-Yun WANG ; Man-Li XIE ; Wan-Li DENG
Chinese journal of integrative medicine 2025;31(6):529-540
OBJECTIVE:
To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.
METHODS:
In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
RESULTS:
Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function.
CONCLUSION
Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Hesperidin/therapeutic use*
;
Colorectal Neoplasms/metabolism*
;
Glycolysis/drug effects*
;
Animals
;
Humans
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glucose/metabolism*
;
Cell Cycle/drug effects*
;
Mice, Inbred BALB C
;
Mice
;
HCT116 Cells
;
Lactic Acid
6.Chinesization of the HEMO-FISS-QoL questionnaire and its reliability and validity
Songpeng SUN ; Shan JIA ; Fangfang XU ; Tianyu LI ; Zhiyun ZHANG ; Qiaorong CAO ; Xinjian LI ; Yao WU ; Weiping WAN ; Bin SHI ; Jianguo WANG ; Hong NI ; Longyu LIANG ; Xingxiao HUO ; Tianqing YANG ; Lei TIAN ; Ying TIAN ; Mei LIN ; Zhanjun WANG ; Yangyang ZHOU ; Hongchuan CHU ; Riyu LIAO ; Kuerban XIEYIDA ; Junhong LONG ; Shuxin ZHANG
Chinese Journal of Behavioral Medicine and Brain Science 2024;33(1):75-82
Objective:To evaluate the reliability and validity of the Chinese version of HEMO-FISS-QoL(HF-QoL) questionnaire (HF-QoL-C) in the Chinese population with hemorrhoids.Methods:From November 2021 to November 2022, a self-constructed general information questionnaire, HF-QoL-C, and the 36-item short form health survey (SF-36), Goligher classification, and Giordano severity of hemorrhoid symptom questionnaire (GSQ) were used to conduct a questionnaire survey on 760 hemorrhoid patients in the anorectal department of six hospitals. The data was analyzed for reliability and validity using SPSS 21.0 and AMOS 26.0 software.Results:The Cronbach's α coefficient of HF-QoL-C and its dimension ranged from 0.831 to 0.960, and the split coefficient was 0.832-0.915. Four common factors were extracted through principal component exploratory factor analysis. Confirmatory factor analysis indicated acceptable structural validity( χ2/ df=8.152, RSMEA=0.097, CFI=0.881, IFI=0.881, NFI=0.867). HF-QoL-C was correlated with SF36 and GSQ( r=-0.694, 0.501, both P<0.01). There were differences in the total score and dimensional scores of HF-QoL-C between surgical and drug treated patients, different grades of Goligher classification for hemorrhoidal disease, and different ranges of hemorrhoid prolapse (all P<0.001). No ceiling effect was found in the total score and the scores of each dimension(0.3%-2.0%). There was a floor effect in both psychological function and sexual activity dimensions (16.7%, 35.1%). Conclusion:HF-QoL-C has good reliability and validity, which can be used to measure the quality of life of Chinese hemorrhoid patients.
7.Exendin-4 inhibiting cyclophilin A reducing the pathological phenotype of atherosclerotic mice
Shan-Shan YANG ; Yu-Xiang PAN ; Wan ZHENG ; Zheng WANG
Acta Anatomica Sinica 2024;55(2):229-236
Objective To investigate the effect of glucagon-like peptide 1(GLP-1)receptor agonists exendin-4 on the secretion of cyclophilin A(CyPA)to inhibit atherosclerosis(AS)and vascular calcification in mice role of the process.Methods Twenty ApoE-/-mice were randomly divided into model group and exendin-4 group,10 mice in each group,and were fed with high-fat diet to establish AS model,another 10 wild-type C57BL/6J mice were taken as the control group,and the exendin-4 group was intraperitoneally injected with the GLP-1R agonist exendin-4,1/d,for 8 weeks.After 8 weeks,the ELISA method was used to determine the level of triglyceride(TG),total cholesterol(TC),high density lipoprotein cholesterol(HDL-C),low density lipoprotein cholesterol(LDL-C)and CyPA,serum calcium level was detected by methylthymol blue colorimetric method,oil red O staining to detect the development of atherosclerotic plaques in the aorta,HE staining was used to observe the pathological changes of the aorta,Von Kossa staining was used to observe the calcium deposition in the aorta,immunohistochemical staining,Real-time PCR and Western blotting were used to detect the expression levels of aortic RUNX2 and bone morphogenetic protein 2(BMP-2),immunofluorescent staining was used to detect the positive expression of CyPA in aortic tissue.Results Compared with the control group,the serum levels of TG,TC,LDL-C,Ca and CyPA in the model group increased(P<0.05),the atherosclerotic plaque areas of the aorta increased(P<0.05),the aortic wall was thickened significantly and a large number of inflammatory cells were infiltrated,a large amount of calcium deposits were deposited in the aortic parietal membrane,the positive expression area ratio of RUNX2 and BMP-2,the relative mRNA expression of RUNX2 and BMP-2,the relative protein expression of RUNX2 and BMP-2 in aortic tissue all increased(P<0.05),and the red fluorescence of CyPA expression in aortic tissue was enhanced significantly.Compared with the model group,the serum levels of TG,TC,LDL-C,Ca and CyPA in the exendin-4 group decreased(P<0.05),the atherosclerotic plaque areas of the aorta decreased(P<0.05),the thickening of the aortic wall and the infiltration of inflammatory cells were alleviated significantly,the calcium deposition in the aortic wall was reduced,the positive expression area ratio of RUNX2 and BMP-2,the relative mRNA expression of RUNX2 and BMP-2,the relative protein expression of RUNX2 and BMP-2 in aortic tissue all decreased(P<0.05),and at the same time,the red fluorescence of CyPA expression in aortic tissue was weakened significantly.Conclusion GLP-1 receptor agonists exendin-4 can inhibit atherosclerosis and vascular calcification in mice,and the mechanism may be related to the reduction of CyPA secretion.
8.The Investigation and Analysis of the Situation of COVID-19 Vaccination and Vaccination Willingness in HIV/AIDS Population in Yunnan Province
Songqin LYU ; Shan HUANG ; Litang MA ; Xiu WANG ; Hongtao ZHANG ; Qin LI ; Chunping WAN ; Zhengchao LYU
Journal of Kunming Medical University 2024;45(1):48-54
Objective To investigate the vaccination status and vaccination willingness of novel coronavirus in HIV/AIDS population in Yunnan.Methods From October 2021 to June 2022,a questionnaire survey was conducted among 2180 HIV/AIDS patients in Kunming,Qujing,Yuxi,Zhaotong,Puer,Baoshan,Lincang,Honghe,Wenshan,Xishuangbanna,Dali,Dehong and Nujiang prefectures.The questionnaire included age,sex,education,nationality,education level,vaccination,adverse reactions within 7 days after the vaccination,safety of COVID-19 vaccine,awareness of effectiveness,vaccination willingness and so on.Results Among the subjects,2109 completed 3 injections,accounting for 96.74%,and 71 were not vaccinated,accounting for 3.26% .Within 7 days of inoculation,local adverse reactions occurred in 116 cases,accounting for 5.50%,and systemic adverse reactions occurred in 56 cases,accounting for 2.66% .Injection site pain,fatigue and muscle pain accounted for the highest proportion of adverse symptoms in different sex,age and the Han nationality,while the proportion of minority adverse reactions was very low,and there was no difference among the different sex and age(P>0.05).The main reasons for the reluctance of HIV/AIDS population to be vaccinated were(recommended by doctors)that HIV/AIDS patients could not be vaccinated(67.61%)and may have serious adverse reactions after the vaccination(19.72%).The factors affecting the vaccination were found by logistic regression analysis,whether they were worried about infecting novel coronavirus(OR = 0.121,95% CI = 0.083~0.640,P<0.001)and how much they knew about COVID-19 vaccine(OR = 28.932,95% CI = 15.469~54.115,P<0.001),safety of vaccination(OR = 13.953,95% CI = 4.819~40.404,P<0.001)and belief in the preventive effect of vaccine(OR = 14.017,95% CI = 4.752~41.348,P<0.001)were significant factors affecting vaccination.Among the 13 prefectures and cities,Dehong(20),Zhaotong(21)and Lincang(14)had the largest number of unvaccinated people.Conclusion After the mass vaccination,the rate of adverse reaction in HIV/AIDS population is low,the symptoms are mild,the correct and scientific advice and guidance from doctors and the full understanding of the harmfulness of the disease,the safety,prevention and effectiveness of the vaccine are the key to complete vaccination and put an end to vaccine hesitancy.
9.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
10.Research on Electrochemical Chemical Oxygen Demand Sensor
Shan YUN ; Lei WANG ; Li-Guo WAN ; Zhen-Yu PENG ; Hong-Chang WANG ; Jun-Feng ZHAI ; Shao-Jun DONG
Chinese Journal of Analytical Chemistry 2024;52(9):1298-1306
An electrochemical chemical oxygen demand(COD)sensor was proposed based on a FTO/TiO2/PbO2 electrode and a thin-layer electrochemical cell.The FTO/TiO2/PbO2 electrode was characterized by X-ray photoelectronic spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy and electrochemical technique,and the results indicated that the rapid decrease in the output signals of the electrochemical COD sensor could be attributed to oxidation of PbSO4 occurring on the surface of FTO/TiO2/PbO2 electrode.The PbO2 deposition time and concentration of Na2SO4 were further optimized and then the electrochemical COD sensor was challenged by real samples including laker water sample,river water sample and wastewater sample.The evolution trend of signals of the electrochemical COD sensor in response to lake and river water samples was identical with that obtained with the standard method(HJ/T399-2007,Water quality-determination of the chemical oxygen demand-fast digestion-spectrophotometric method).The electrochemical COD sensor exhibited significant increase in the signal intensity after the samples were switched from lake water to wastewater sample,and a mean value of 32.5 mg/L with relative standard deviation(RSD)of 6.8%were obtained after measuring 45 times the wastewater with COD value of 30 mg/L under a sampling interval of 400 s.The as-prepared electrochemical COD sensor possessed good promise in regular monitoring of COD,discharge of wastewater and industrial process control,with advantages such as a small sampling interval,mild reaction conditions and no requirement of toxic and harmful chemical reagents.

Result Analysis
Print
Save
E-mail