1.Construction and value of a vestibular function calibration test recognition model based on dual-stream ViT and ConvNeXt architecture
Xu LUO ; Peixia WU ; Weiming HAO ; Yinhong QU ; Han CHEN
Chinese Journal of Clinical Medicine 2025;32(2):207-211
Objective To improve the efficiency and accuracy of videonystagmography calibration test results while enabling effective recognition of saccadic undershoot waveform by developing a dual-stream architecture-based deep learning model. Methods A vestibular function calibration test recognition model with cross-modal feature fusion was constructed by integrating vision transformer (ViT) and a modified ConvNeXt convolutional network. The model utilized trajectory pictures and spatial distribution maps as inputs, employed a multi-task learning framework to classify calibration data, and to directly evaluate undershoot waveform. Results The model showed outstanding performance in assessing calibration compliance. The accuracy, sensitivity, specificity of the model in left side, middle, and right side were all greater than 90%, and AUC values were all greater than 0.99, with 97.66% of optimal accuracy (middle), 98.98% of optimal sensitivity (middle), 96.87% of optimal specificity (right side), and
2.Acupuncture Treatment Strategies for Crohn's Disease Based on the Principle of "Shaoyang as the Pivot"
Chunhui BAO ; Jin HUANG ; Xinyi ZHU ; Zhou HAO ; Luyi WU ; Huirong LIU ; Huangan WU
Journal of Traditional Chinese Medicine 2025;66(10):1017-1022
The shaoyang meridian is an important pivot between the internal organs and meridians system, with the functions of regulating qi and blood, balancing yin and yang, and coordinating the ascending and descending movement of qi. Dysfunction of the shaoyang pivot can lead to spleen and kidney deficiency, impaired liver and gallbladder qi regulation, and stagnation of qi and blood. It is believed that the onset and progression of Crohn's disease are closely related to shaoyang pivot dysfunction, with the core pathogenesis characterized by shaoyang disharmony, spleen deficiency, dampness retention, and blood stasis. Based on this understanding, the treatment principle centers on harmonizing the shaoyang pivot, supplemented by methods such as warming and nourishing the spleen and stomach, tonifying shaoyang, and soothing the liver and benefiting the gallbladder. Acupuncture is employed to target key acupoints along the shaoyang meridian to restore its regulatory functions, improve spleen and stomach transformation and transportation, facilitate liver and gallbladder qi flow, and promote the circulation of qi and blood. This provides a practical therapeutic approach for acupuncture-based treatment of Crohn's disease.
3.Action Mechanism of Resolving Dampness and Phlegm of Pinelliae Rhizoma Praeparatum Based on Interconnection Between Lung and Large Intestine
Xingbao TAO ; Chentao ZHAO ; Xiaofu ZHU ; Hao WU ; Jun HE ; Weiguo CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):122-131
ObjectiveTo investigate the effects of Pinelliae Rhizoma Praeparatum (PRP) on lung tissue, gut microbiota, and short-chain fatty acid (SCFA) metabolism in a model of mice with cold fluid retention in the lung and explore its mechanism of action in resolving dampness and phlegm based on the interconnection between the lung and large intestine. MethodsFifty female ICR mice were randomly divided into a normal group, model group, positive control group (Xiaoqinglong granules, 6.5 g·kg-1), and high-dose and low-dose PRP decoction groups (3.0, 1.5 g·kg-1), with 10 mice in each group. A model of mice with cold fluid retention in the lung was established using ovalbumin (OVA) sensitization combined with cold-water immersion. Drug interventions were conducted from day 18 to day 33 for 15 consecutive days. The airway resistance value of the mice was measured using a non-invasive pulmonary function analyzer. Phlegm-resolving effects were evaluated via a microplate reader. Eosinophil and neutrophil counts in bronchoalveolar lavage fluid (BALF) were analyzed using an automated hematology analyzer. Serum levels of total immunoglobulin E (IgE), interferon-γ (IFN-γ), interleukin-4 (IL-4), and BALF levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were quantified by enzyme-linked immunosorbent assay (ELISA). Lung histopathology was assessed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was employed to detect mucin 5AC (MUC5AC) and aquaporin 5 (AQP5) protein expression in lung tissue. Gut microbiota composition was analyzed via agarose gel electrophoresis, and fecal SCFA levels were measured by gas chromatography-mass spectrometry (GC-MS). ResultsCompared with the normal group, the model group exhibited significantly increased airway resistance value (RI) (P<0.05), elevated eosinophil and neutrophil counts and IL-6 and IL-8 levels in BALF (P<0.05), increased serum IgE and IL-4 levels (P<0.05), with reduced IFN-γ levels (P<0.05). It also showed thickened bronchial walls, widened alveolar septa, narrowed lumens, and mucus plugs in lung tissue, upregulated MUC5AC protein expression and downregulated AQP5 protein expression (P<0.05), decreased relative abundance of beneficial gut microbiota (Firmicutes, Clostridia, Clostridiales, Lactobacillaceae, and Lactobacillus), and increased abundance of harmful microbiota (Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, and Muribaculum). In addition, the model group presented reduced fecal SCFA levels (acetate, propionate, and butyrate) (P<0.05). After the intervention of PRP decoction, compared to the model group, all drug administration groups showed decreased RI (P<0.05), increased phenol red excretion, declined eosinophil and neutrophil counts and IL-6, IL-8, IgE, and IL-4 levels (P<0.05), and improved IFN-γ levels (P<0.05) and lung pathology improved. The MUC5AC protein expression decreased (P<0.05), and the AQP5 protein expression increased (P<0.05). The disorder of gut microbiota was improved, and the diversity of gut microbiota was restored, with a significantly increased relative abundance ratio of beneficial microbiota (P<0.05) and a significantly reduced relative abundance ratio of harmful microbiota (P<0.05). The SCFA levels (acetate, propionate, and butyrate) increased (P<0.05). The efficacy indicators of serum inflammatory factors (IgE, IL-4, and IFN-γ), phlegm-resolving effect, airway resistance, total pathological score, and the protein expression of MUC5AC and AQP5 were correlated with gut microbiota and SCFAs. ConclusionPRP decoction alleviates cold-phlegm syndrome by modulating the gut-lung axis, promoting beneficial gut microbiota, enhancing SCFA production, restoring the balance of gut microbiota, and suppressing respiratory inflammation. This study provides novel insights into the TCM theory of interconnection between the lung and large intestine.
4.Mechanism of Paeonol in Alleviating Alcohol-induced Liver Injury in Mice Through Regulating SCFAs-GPR43/MAPK Signaling Pathway Mediated by Intestinal Flora
Shengnan JIANG ; Qifeng WU ; Zining WANG ; Hao PU ; Guiming YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):129-139
ObjectiveTo investigate the ameliorative effect of paeonol on acute alcohol-induced hepatic inflammation in mice via the regulation of the short-chain fatty acids (SCFAs)-specific receptor GPR43/mitogen-activated protein kinase (MAPK) signaling pathway. MethodsC57BL/6 mice were randomly divided into five groups: blank control group, model group, low-dose paeonol group (120 mg·kg-1), high-dose paeonol group (480 mg·kg-1), and silybin group (36.8 mg·kg-1). A mouse model of alcohol-induced liver disease (ALD) was established by ad libitum administration of a Lieber-DeCarli alcohol liquid diet. Serum lipid levels, liver function, inflammatory cytokines, and oxidative stress markers were measured. Liver hematoxylin-eosin (HE) staining and Oil Red O staining were performed to validate successful modeling. Western blot analysis was used to assess the expression levels of zonula occludens-1 (ZO-1), Claudin-1, and proteins related to the GPR43/MAPK signaling pathway in the colonic tissue. Immunohistochemistry was employed to detect the protein expression of GPR43, ZO-1, and Claudin-1 in the colon. Then 16S rDNA sequencing was performed to analyze differences in intestinal flora between the model group and the high-dose paeonol group. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to validate the regulatory effect of paeonol on ALD via modulation of intestinal flora. ResultsCompared with the blank control group, the model group showed significantly elevated serum lipid levels, oxidative stress, and inflammatory cytokine expression (P<0.01). Liver histology revealed increased inflammatory infiltration and lipid droplet accumulation. Colonic mucosal injury and impaired intestinal barrier function were observed. Levels of MAPK pathway-related proteins in the colonic tissue were upregulated (P<0.01), while GPR43, ZO-1, and Claudin-1 protein expression levels were significantly decreased (P<0.01). The composition and abundance of the intestinal flora were markedly altered, with a reduced Bacteroidetes-to-Firmicutes ratio and decreased relative abundances of Eubacterium, Parabacteroides, Erysipelothrix, and Adlercreutzia, alongside increased abundances of Clostridium butyricum, Enterococcus, and Helicobacter pylori in the model group. Compared with the model group, paeonol significantly reduced serum lipid levels, oxidative stress responses, and the expression of inflammatory cytokines in ALD mice (P<0.05, P<0.01). It also attenuated hepatic lipid accumulation, restored intestinal barrier function, and repaired the structural integrity of liver and colonic tissues. The protein expression levels of ZO-1, Claudin-1, and GPR43 in the colonic tissue were significantly increased (P<0.05, P<0.01), while those of MAPK pathway-related proteins were significantly decreased (P<0.05, P<0.01). The intestinal flora dysbiosis was effectively alleviated, rendering its composition closer to that of normal mice. The efficacy of paeonol in modulating ALD was further confirmed by FMT experiments, supporting its mechanistic involvement in the SCFAs-GPR43/MAPK signaling pathway. ConclusionPaeonol exerts a protective effect against ALD in mice, which may be mediated through regulation of the SCFAs-GPR43/MAPK signaling pathway, thereby achieving anti-inflammatory effects and improving intestinal barrier function.
5.Action Mechanism of Resolving Dampness and Phlegm of Pinelliae Rhizoma Praeparatum Based on Interconnection Between Lung and Large Intestine
Xingbao TAO ; Chentao ZHAO ; Xiaofu ZHU ; Hao WU ; Jun HE ; Weiguo CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):122-131
ObjectiveTo investigate the effects of Pinelliae Rhizoma Praeparatum (PRP) on lung tissue, gut microbiota, and short-chain fatty acid (SCFA) metabolism in a model of mice with cold fluid retention in the lung and explore its mechanism of action in resolving dampness and phlegm based on the interconnection between the lung and large intestine. MethodsFifty female ICR mice were randomly divided into a normal group, model group, positive control group (Xiaoqinglong granules, 6.5 g·kg-1), and high-dose and low-dose PRP decoction groups (3.0, 1.5 g·kg-1), with 10 mice in each group. A model of mice with cold fluid retention in the lung was established using ovalbumin (OVA) sensitization combined with cold-water immersion. Drug interventions were conducted from day 18 to day 33 for 15 consecutive days. The airway resistance value of the mice was measured using a non-invasive pulmonary function analyzer. Phlegm-resolving effects were evaluated via a microplate reader. Eosinophil and neutrophil counts in bronchoalveolar lavage fluid (BALF) were analyzed using an automated hematology analyzer. Serum levels of total immunoglobulin E (IgE), interferon-γ (IFN-γ), interleukin-4 (IL-4), and BALF levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were quantified by enzyme-linked immunosorbent assay (ELISA). Lung histopathology was assessed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was employed to detect mucin 5AC (MUC5AC) and aquaporin 5 (AQP5) protein expression in lung tissue. Gut microbiota composition was analyzed via agarose gel electrophoresis, and fecal SCFA levels were measured by gas chromatography-mass spectrometry (GC-MS). ResultsCompared with the normal group, the model group exhibited significantly increased airway resistance value (RI) (P<0.05), elevated eosinophil and neutrophil counts and IL-6 and IL-8 levels in BALF (P<0.05), increased serum IgE and IL-4 levels (P<0.05), with reduced IFN-γ levels (P<0.05). It also showed thickened bronchial walls, widened alveolar septa, narrowed lumens, and mucus plugs in lung tissue, upregulated MUC5AC protein expression and downregulated AQP5 protein expression (P<0.05), decreased relative abundance of beneficial gut microbiota (Firmicutes, Clostridia, Clostridiales, Lactobacillaceae, and Lactobacillus), and increased abundance of harmful microbiota (Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, and Muribaculum). In addition, the model group presented reduced fecal SCFA levels (acetate, propionate, and butyrate) (P<0.05). After the intervention of PRP decoction, compared to the model group, all drug administration groups showed decreased RI (P<0.05), increased phenol red excretion, declined eosinophil and neutrophil counts and IL-6, IL-8, IgE, and IL-4 levels (P<0.05), and improved IFN-γ levels (P<0.05) and lung pathology improved. The MUC5AC protein expression decreased (P<0.05), and the AQP5 protein expression increased (P<0.05). The disorder of gut microbiota was improved, and the diversity of gut microbiota was restored, with a significantly increased relative abundance ratio of beneficial microbiota (P<0.05) and a significantly reduced relative abundance ratio of harmful microbiota (P<0.05). The SCFA levels (acetate, propionate, and butyrate) increased (P<0.05). The efficacy indicators of serum inflammatory factors (IgE, IL-4, and IFN-γ), phlegm-resolving effect, airway resistance, total pathological score, and the protein expression of MUC5AC and AQP5 were correlated with gut microbiota and SCFAs. ConclusionPRP decoction alleviates cold-phlegm syndrome by modulating the gut-lung axis, promoting beneficial gut microbiota, enhancing SCFA production, restoring the balance of gut microbiota, and suppressing respiratory inflammation. This study provides novel insights into the TCM theory of interconnection between the lung and large intestine.
6.Mechanism of Paeonol in Alleviating Alcohol-induced Liver Injury in Mice Through Regulating SCFAs-GPR43/MAPK Signaling Pathway Mediated by Intestinal Flora
Shengnan JIANG ; Qifeng WU ; Zining WANG ; Hao PU ; Guiming YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):129-139
ObjectiveTo investigate the ameliorative effect of paeonol on acute alcohol-induced hepatic inflammation in mice via the regulation of the short-chain fatty acids (SCFAs)-specific receptor GPR43/mitogen-activated protein kinase (MAPK) signaling pathway. MethodsC57BL/6 mice were randomly divided into five groups: blank control group, model group, low-dose paeonol group (120 mg·kg-1), high-dose paeonol group (480 mg·kg-1), and silybin group (36.8 mg·kg-1). A mouse model of alcohol-induced liver disease (ALD) was established by ad libitum administration of a Lieber-DeCarli alcohol liquid diet. Serum lipid levels, liver function, inflammatory cytokines, and oxidative stress markers were measured. Liver hematoxylin-eosin (HE) staining and Oil Red O staining were performed to validate successful modeling. Western blot analysis was used to assess the expression levels of zonula occludens-1 (ZO-1), Claudin-1, and proteins related to the GPR43/MAPK signaling pathway in the colonic tissue. Immunohistochemistry was employed to detect the protein expression of GPR43, ZO-1, and Claudin-1 in the colon. Then 16S rDNA sequencing was performed to analyze differences in intestinal flora between the model group and the high-dose paeonol group. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to validate the regulatory effect of paeonol on ALD via modulation of intestinal flora. ResultsCompared with the blank control group, the model group showed significantly elevated serum lipid levels, oxidative stress, and inflammatory cytokine expression (P<0.01). Liver histology revealed increased inflammatory infiltration and lipid droplet accumulation. Colonic mucosal injury and impaired intestinal barrier function were observed. Levels of MAPK pathway-related proteins in the colonic tissue were upregulated (P<0.01), while GPR43, ZO-1, and Claudin-1 protein expression levels were significantly decreased (P<0.01). The composition and abundance of the intestinal flora were markedly altered, with a reduced Bacteroidetes-to-Firmicutes ratio and decreased relative abundances of Eubacterium, Parabacteroides, Erysipelothrix, and Adlercreutzia, alongside increased abundances of Clostridium butyricum, Enterococcus, and Helicobacter pylori in the model group. Compared with the model group, paeonol significantly reduced serum lipid levels, oxidative stress responses, and the expression of inflammatory cytokines in ALD mice (P<0.05, P<0.01). It also attenuated hepatic lipid accumulation, restored intestinal barrier function, and repaired the structural integrity of liver and colonic tissues. The protein expression levels of ZO-1, Claudin-1, and GPR43 in the colonic tissue were significantly increased (P<0.05, P<0.01), while those of MAPK pathway-related proteins were significantly decreased (P<0.05, P<0.01). The intestinal flora dysbiosis was effectively alleviated, rendering its composition closer to that of normal mice. The efficacy of paeonol in modulating ALD was further confirmed by FMT experiments, supporting its mechanistic involvement in the SCFAs-GPR43/MAPK signaling pathway. ConclusionPaeonol exerts a protective effect against ALD in mice, which may be mediated through regulation of the SCFAs-GPR43/MAPK signaling pathway, thereby achieving anti-inflammatory effects and improving intestinal barrier function.
7.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
8.Combination of effective ingredients of traditional Chinese medicine and bone tissue engineering materials for bone repair
Yaokun WU ; Chenglin LIU ; Jiahao FU ; Wei SONG ; Hao CHEN ; Hongzhong XI ; Xin LIU ; Bin DU ; Guangquan SUN
Chinese Journal of Tissue Engineering Research 2025;29(10):2141-2150
BACKGROUND:How to repair bone defect has been a clinical problem for a long time.The effective ingredients of traditional Chinese medicine have good biological activity and therapeutic effect,and the combination of effective ingredients of traditional Chinese medicine and tissue engineering materials has a broad prospect in the field of bone repair.The combination of different effective ingredients of traditional Chinese medicine and scaffolds has similarities in their functional relationships. OBJECTIVE:To collect the cases of the combinations of effective ingredients of traditional Chinese medicine and scaffolds,then analogize tissue engineering scaffolds and effective ingredients of traditional Chinese medicine into two types of traditional Chinese medicine that generate compatibility relationships based on the inspiration of the compatibility of seven emotions and summarize the relationship between the two based on their functional relationships. METHODS:Relevant articles from January 1998 to January 2024 were searched in PubMed and China National Knowledge Infrastructure(CNKI),using English search terms"traditional Chinese medicine,Chinese medicine,traditional Chinese medicine monomers,bone defect,bone repair,bone tissue engineering,tissue engineering,scaffold"and Chinese search terms"traditional Chinese medicine,effective ingredients of traditional Chinese medicine,traditional Chinese medicine monomers,bone tissue engineering,bone tissue engineering scaffold,scaffold,tissue engineering,bone defect,bone repair."A total of 88 articles were included for review and analysis. RESULTS AND CONCLUSION:(1)Both tissue engineering scaffold materials and active ingredients of traditional Chinese medicine have been widely used in the field of bone repair.Although they have obvious advantages in osteogenesis,there are still many shortcomings.Many studies are dedicated to preparing composite materials from the two,hoping to exert a detoxification and synergism through the interaction between the two.(2)Some drugs and materials can promote each other in osteogenesis,antibacterial,and promoting angiogenesis,enhancing their original effects.Inspired by the traditional concept of prescription compatibility,this article summarized it as a"Mutual promotion"relationship and provided examples to support it.(3)Some drugs can enhance the strength of materials,while some materials can achieve sustained release and controlled release effects,increase drug loading and stability,or achieve targeted delivery of drugs loaded on them.The article summarized this unilateral enhancement effect as a"Mutual assistance"relationship.(4)The combination of some traditional Chinese medicine and materials can reduce the toxic side effects of the other party.The article summarizes this detoxification relationship as"Mutual restraint and detoxification."(5)The article provided a new perspective on traditional Chinese medicine composite scaffolds,inspired by the seven emotions compatibility relationship and based on the classification of action relationships.It introduced traditional Chinese medicine concepts into the field of tissue engineering,providing new research ideas for subsequent researchers of composite scaffolds,and providing certain convenience in material selection and matching.
10.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.

Result Analysis
Print
Save
E-mail