1.Sanren Runchang Formula Regulates Brain-gut Axis to Treat IBS-C: A Randomized Controlled Trial
Teng LI ; Xinrong FAN ; He YAN ; Zhuozhi GONG ; Mengxi YAO ; Na YANG ; Yuhan WANG ; Huikai HU ; Wei WEI ; Tao LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):154-161
ObjectiveTo observe the clinical efficacy of Sanren Runchang formula in treating constipation-predominant irritable bowel syndrome (IBS-C) by regulating the brain-gut axis and the effects of the formula on serum levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and substance P (SP). MethodsA randomized controlled design was adopted, and 72 IBS-C patients meeting Rome Ⅳ criteria were randomized into observation and control groups (36 cases).The observation group received Sanren Runchang formula granules twice daily, and the control group received lactulose oral solution daily for 4 weeks. IBS Symptom Severity Scale (IBS-SSS), IBS Quality of Life Scale (IBS-QOL), and Bristol Stool Form Scale (BSFS) were used to assess clinical symptoms, and bowel movement frequency was recorded. The Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) were employed to evaluate psychological status. ELISA was employed to measure the serum levels of 5-HT, VIP, and SP. ResultsThe total response rate in the observation group was 91.67% (33/36), which was higher than that (77.78%, 28/36) in the control group (χ2=4.50, P<0.05). After treatment, both groups showed increased defecation frequency and BSFS scores, decreased IBS-SSS total score, abdominal pain and bloating scores, IBS-QOL health anxiety, anxiety, food avoidance, and behavioral disorders scores, SAS and SDS scores, serum 5-HT and VIP levels, and increased SP levels (P<0.05, P<0.01). Moreover, the observation group showed more significant changes in the indicators above than the control group (P<0.05, P<0.01). The SP level showed no significant difference between the two groups. During the 4-week follow-up, the recurrence rate was 5.88% in the observation group and 31.25% in the control group. No adverse events occurred in observation group, and 2 cases of mild diarrhea occurred in the control group. ConclusionSanren Runchang formula demonstrated definitive efficacy in alleviating gastrointestinal symptoms and improving the psychological status and quality of life in IBS-C patients, with a low recurrence rate. The formula can regulate serum levels of neurotransmitters such as 5-HT and VIP, suggesting its potential regulatory effect on the brain-gut axis through modulating neurotransmitters and neuropeptides. However, its complete mechanism of action requires further investigation through detection of additional brain-gut axis-related biomarkers.
2.Mechanism of Action of Guishenwan in Treatment of Ovarian Insufficiency Diseases: A Review
Yao CHEN ; Sainan TIAN ; Bin'an WANG ; Shengyu WANG ; Wen'e LIU ; Lei LEI ; Li TANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):317-324
Guishenwan (GSW), originating from Jingyue Quanshu (Zhang Jingyue's Complete Works), is a classic traditional Chinese medicine (TCM) formula with a history of over 400 years. Designed for kidney essence deficiency syndrome, it is clinically applied to treat diseases associated with essence-blood deficiency, such as ovarian insufficiency diseases in women, oligospermia-induced infertility in men, and lumbar disc herniation. Numerous studies have confirmed its significant efficacy and advantages in managing ovarian insufficiency diseases, including diminished ovarian reserve (DOR), premature ovarian insufficiency (POI), and premature ovarian failure (POF). According to recent literature, the therapeutic mechanisms of GSW in treating ovarian insufficiency diseases involve regulating the hypothalamic-pituitary-ovarian axis (HPOA) function, ameliorating reproductive endocrine disorders, improving ovarian function, modulating relevant signaling pathways, and exerting immunoregulatory and anti-inflammatory effects. A review of GSW in clinical treatment revealed that clinical applications of GSW, particularly in combination with Western medicine, not only alleviate symptoms but also compensate for the limitations of hormone replacement therapy, thereby reducing recurrence, minimizing adverse reactions, and enhancing safety. This review aims to provide a scientific basis for the rational clinical use of GSW in ovarian insufficiency diseases, offer innovative TCM strategies for developing novel ovarian-protective drugs, promote the integration of TCM and Western medicine in reproductive medicine, and ultimately contribute a Chinese approach to global management of ovarian insufficiency diseases.
3.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
4.Fabrication and evaluation of an inositol hexaphosphate-zinc hydrogel with dual capabilities of self-mineralization and osteoinduction
LIU Mingyi ; MIAO Xiaoyu ; CAI Yunfan ; WANG Yan ; SUN Xiaotang ; KANG Jingrui ; ZHAO Yao ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):29-40
Objective:
To fabricate a hydrogel loaded with inositol hexaphosphate-zinc and preliminarily evaluate its performance in self-mineralization and osteoinduction, thereby providing a theoretical basis for the development of bone regeneration materials.
Methods:
The hydrogel framework (designated DF0) was formed by copolymerizing methacryloyloxyethyltrimethylammonium chloride and four-armed poly(ethylene glycol) acrylate, followed by sequentially loading inositol hexaphosphate anions via electrostatic interaction and zinc ions via chelation. The hydrogel loaded only with inositol hexaphosphate anions was named DF1, while the co-loaded hydrogel was named DF2. The self-mineralization efficacy of the DF0 , DF1 and DF2 hydrogels was characterized using scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The biocompatibility was assessed via live/dead cell staining and a CCK-8 assay. The osteoinductive capacity of the DF0 , DF1 and DF2 hydrogels on MC3T3-E1 cells was assessed via alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining. In the aforementioned cell experiments, cells cultured in standard medium served as the control group
Results:
The DF0, DF1, and DF2 hydrogels were successfully synthesized. Notably, DF1 and DF2 exhibited distinct self-mineralization within 6 days. Results from TEM, EDS, and SAED confirmed that the mineralization products were amorphous calcium phosphate in group DF1, and amorphous calciumzinc phosphate in group DF2. Biocompatibility tests revealed that none of the hydrogels (DF0, DF1, and DF2) adversely affected cell viability or proliferation. In osteogenic induction experiments, both ALP and ARS staining were intensified in the DF1 and DF2 groups, with the most profound staining observed in the DF2 group.
Conclusion
The developed inositol hexaphosphate-zinc hydrogel (DF2) demonstrates the dual capacity to generate calcium-phosphate compounds through self-mineralization while exhibiting excellent osteoinductive properties. This biocompatible, dual-promoting osteogenic hydrogel presents a novel strategy for bone regeneration.
5.Effect of community comprehensive management model intervention among patients with dyslipidemia
GAO Hui ; XIE Liang ; YAO Chunyang ; WANG Linhong ; JIN Liu ; HU Jie
Journal of Preventive Medicine 2026;38(1):15-19
Objective:
To evaluate the effect of community comprehensive management model intervention among patients with dyslipidemia, so as to provide the reference for optimizing community management strategies and improving the target achievement rate for blood lipids among this population.
Methods:
From May to June 2023, a multi-stage stratified random sampling method was employed to select patients with dyslipidemia from primary healthcare institutions in Jiaxing City, Zhejiang Province. Eligible participants were randomly assigned to either a control group or an intervention group. The control group received routine management, while the intervention group was subjected to a community comprehensive management model in addition to the routine care. Both groups were followed up for 24 months. Data on demographic characteristics, lifestyle behaviors, physical examination indices, and blood biochemical indicators were collected at baseline and after the intervention through questionnaires, physical examinations, and laboratory tests. Changes in obesity rate, central obesity rate, target achievement rates for blood lipids, blood pressure, and blood glucose, as well as lifestyle modifications, were analyzed. Differences between the two groups before and after the intervention were assessed using generalized estimating equations (GEE).
Results:
The control group consisted of 560 patients, including 303 females (54.11%) and 430 individuals aged ≥65 years (76.79%). The intervention group also included 560 patients, with 300 females (53.57%) and 431 individuals aged ≥65 years (76.96%). Before the intervention, no statistically significant differences were observed between the two groups in terms of gender, age, educational level, history of chronic diseases, and atherosclerotic cardiovascular disease risk stratification (all P>0.05). After 24 months of intervention, interaction effects between group and time were observed for obesity rate, central obesity rate, target achievement rate for blood lipids, target achievement rate for blood glucose, composite target achievement rate, physical activity rate, and medication adherence (all P<0.05). Specifically, the intervention group demonstrated lower rates of obesity and central obesity, and higher target achievement rate of blood lipids, target achievement rate of blood glucose, composite target achievement rate, physical activity rate, and medication adherence compared to the control group.
Conclusion
The community comprehensive management model contributed to improvements in multiple metabolic parameters (including body weight, waist circumference, blood lipids, and blood glucose) among patients with dyslipidemia, and was associated with increased physical activity rate and medication adherence.
6.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
7.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
8.Construction and practice of the theory of “turbid toxin pathogenesis” and related prevention and treatment strategies for hepatic encephalopathy in traditional Chinese medicine/Zhuang medicine
Zhipeng WU ; Yuqin ZHANG ; Chun YAO ; Minggang WANG ; Na WANG ; Mengru PENG ; Ningfang MO ; Yaqing ZHENG ; Rongzhen ZHANG ; Dewen MAO
Journal of Clinical Hepatology 2025;41(2):370-374
Hepatic encephalopathy is a difficult and critical disease with rapid progression and limited treatment methods in the field of liver disease, and it is urgently needed to make breakthroughs in its pathogenesis. Selection of appropriate prevention and treatment strategies is of great importance in delaying disease progression and reducing the incidence and mortality rates. This article reviews the theory of “turbid toxin pathogenesis” and related prevention and treatment strategies for hepatic encephalopathy in traditional Chinese medicine/Zhuang medicine, proposes a new theory of “turbid toxin pathogenesis”, analyzes the scientific connotations of “turbid”, “toxin”, and the theory of “turbid toxin pathogenesis”, and constructs the “four-step” prevention and treatment strategies for hepatic encephalopathy, thereby establishing the new clinical prevention and treatment regimen for hepatic encephalopathy represented by “four prescriptions and two techniques” and clarifying the effect mechanism and biological basis of core prescriptions and techniques in the prevention and treatment of hepatic encephalopathy, in order to provide a reference for the prevention and treatment of hepatic encephalopathy.
9.Research progress on antimicrobial peptides against methicillin-resistant Staphylococcus aureus
Yuxuan WANG ; Weichang GUO ; Cheng CHEN ; Yao LUO ; Yaxiong XIAO ; Jiangtao LI
China Pharmacy 2025;36(5):636-640
Staphylococcus aureus is a Gram-positive bacterium with strong pathogenicity. With the widespread use of antibiotics, its multi-drug resistance has gradually increased. Among them, methicillin-resistant S. aureus (MRSA) is one of the main pathogens of hospital and community infections. Antimicrobial peptides are short-chain peptides with good antibacterial effects and low drug resistance, which have been widely studied in recent years. This study summarizes the mechanism of action of antimicrobial peptides and related study on antimicrobial peptides against MRSA from different sources. It is found that the mechanisms of action of antimicrobial peptides include targeting bacterial cell membranes, bacterial cells, and bacterial cell walls, etc. Besides isolating antimicrobial peptides with anti-MRSA activity from animals, plants, and microorganisms, antimicrobial peptides can also be obtained through synthetic methods. Among them, GHa-derived peptides from animal sources, Ib-AMP4 from plant sources, Ph-SA from microbial sources, the synthetic peptide LLKLLLKLL-NH2, and so on, due to their effective antibacterial activity, rapid bactericidal speed, and low toxicity, are promising candidates for anti-MRSA drugs.
10.Clinical Observation of Modified Zhigancao Tang in Treating Patients with Liver and Kidney Deficiency of Parkinson's Disease and Its Effect on Neuronal Signal-related Proteins
Yifo WEI ; Furong LYU ; Jia YAO ; Guonian LI ; Xianyi LUO ; Meng LUO ; Zhengzheng WEN ; Qiuqi LI ; Yihan LIU ; Linlin YANG ; Rui ZUO ; Wenxin DANG ; Fang MI ; Xiaoyan WANG ; Zhigang CHEN ; Fan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):166-173
ObjectiveMicrotube associated protein-2 (MAP-2), alpha-tubulin (α-tubulin), and synaptophysin (SYP) are important proteins in neuronal signal communication. This paper observed the effects of modified Zhigancao Tang on the expression of serum α-Synuclein (α-Syn) and its oligomers, MAP-2, α-tubulin, and SYP of patients with liver and kidney deficiency of Parkinson's disease (PD), analyzed their correlation, and evaluated the therapeutic effect of modified Zhigancao Tang in patients with liver and kidney deficiency of PD based on α-Syn transmission pathway mediated by neuronal communication in vivo. MethodsA total of 60 patients with PD who met the inclusion criteria were randomly divided into a treatment group (30 cases) and a control group (30 cases). Both groups were treated on the basis of PD medicine, and the treatment group was treated with modified Zhigancao Tang. Both groups were treated for 12 weeks. The changes in UPDRS score, TCM syndrome score, and expression of serum α-Syn and its oligomers, MAP-2, α-tubulin, and SYP were observed before and after 12 weeks of treatment in each group. The correlation between the above-mentioned serum biological indexes and the levels of serum α-Syn and its oligomers was analyzed. ResultsAfter treatment, the TCM syndrome score, UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ score of the treatment group were significantly decreased (P<0.05, P<0.01). The UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ scores in the treatment group were significantly decreased compared with those in the control group after treatment (P<0.05). After treatment, the total effective rate of the control group was 63.3% (19/30), and that of the treatment group was 86.7% (26/30). The clinical effect of the observation group was better than the control group (Z=-2.03, P<0.05). The total effective rate of the observation group was better than that of the control group, and the difference was statistically significant (χ2=5.136, P<0.05). After treatment, the oligomer level of serum α-Syn and MAP-2 level in the treatment group were significantly decreased (P<0.05, P<0.01). The levels of serum α-Syn and its oligomers, as well as α-tubulin in the treatment group, were significantly decreased compared with those in the control group after treatment (P<0.05, P<0.01). Serum α-Syn was correlated with serum MAP-2 and α-Syn oligomer in patients with PD (P<0.05, P<0.01) but not correlated with serum SYP . Serum α-Syn oligomers of patients with PD were correlated with serum MAP-2 and α-tubulin (P<0.05, P<0.01) but not correlated with serum SYP level. Serum SYP of patients with PD was correlated with serum MAP-2 (P<0.05). ConclusionModified Zhigancao Tang has a therapeutic effect on patients with liver and kidney deficiency of PD by inhibiting the production of α-Syn oligomers and intervening α-Syn microtubule transport pathway in vivo.


Result Analysis
Print
Save
E-mail