1.Principles of managing wards for patients with internal radionuclide contamination
Fan BAI ; Chao YANG ; Lei ZHU ; Minghao LIU ; Danjie LIU ; Xiaoxin LIU ; Shanshan GUO ; Jianan WANG
Chinese Journal of Radiological Health 2025;34(3):444-449
Based on current national policies, regulations, standards, relevant literature, and departmental experience regarding the protection against radionuclides in China, this study provides a brief overview of key issues in the management of hospital wards for patients with internal radionuclide contamination. The discussion covers the detection of internal contamination, general requirements for internal radionuclide contamination wards, and inpatient management. In addition, the study explores in depth the daily responsibilities, protective measures, and management protocols for both healthcare staff and patients within such wards. This article summarizes a framework for the construction of internal radionuclide contamination wards, along with specific plans and detailed role-based guidelines. These results provide a reference for the management of hospital wards for patients with internal radionuclide contamination.
2.Short-term efficacy analysis of platelet-rich plasma in arthroscopic rotator cuff repair by comparison of LP-PRP and LR-PRP
Pengshan WANG ; Xiaosong BAI ; Haoran SUN ; Haoxuan LI ; Hongwei CHAI ; Hao LIU ; Hao GUO ; Shuqin ZHU ; Xiaoxin SUN
The Journal of Practical Medicine 2024;40(19):2713-2719
Objective By comparing with arthroscopic rotator cuff repair alone,to explore the efficacy and difference of leukocyte poor platelet-rich plasma(LP-PRP)and leukocyte rich platelet-rich plasma(LR-PRP)in arthroscopic rotator cuff repair.Methods Sixty patients with total rotator cuff tear accompanied by arthroscopic rotator cuff repair admitted to the Affiliated Hospital of North China University of Science and Technology from October 2021 to September 2022 were included and randomly divided into control group(n=20),LP-PRP group(n=20)and LR-PRP group(n=20).The control group only received arthroscopic rotator cuff repair.The LP-PRP group was injected with leukocyte poor platelet-rich plasma(LP-PRP)into the sutured torn tendon after the same operation,and the LR-PRP group was injected with leukocyte rich platelet-rich plasma(LR-PRP)into the sutured torn tendon after the same operation.The postoperative rehabilitation training plan of the three groups was the same,and the postoperative follow-up and evaluation were conducted for 1 year.It included pain score(VAS score),shoulder joint function score(CMS,UCLA,ASES score),retear rate and related complications.Results All patients were followed up.(1)VAS score:Compared with the LR-PRP group and the control group,the results were statistically significant only at 1,3 and 6 weeks after surgery(P<0.05);There was no statistical significance between the LR-PRP group and the control group at 1 week,3 weeks,6 weeks,3 months,6 months and 12 months after surgery(P>0.05).(2)CMS,UCLA and ASES scores:There were no significant differences between the LP-PRP group and the LR-PRP group at 3 months,6 months and 12 months after surgery(P>0.05);Compared with LP-PRP group and LR-PRP group,there were significant differences in each follow-up time point of control group(P<0.05).(3)Retear rate:In the LP-PRP group,there was 1 retear in the LR-PRP group(tear rate 5%),and 3 in the control group(tear rate 15%).There was no statistically significant difference between the three groups(P>0.05).(4)There were no postoperative complications in 60 patients.Conclusions Compared with arthroscopic rotator cuff repair alone,although the application of LP-PRP and LR-PRP could not reduce the rate of retear,it could significantly improve the shoulder joint function of patients,and LP-PRP could significantly reduce the pain of patients with rotator cuff injury in the early postoperative period(within 6 weeks),with no postoperative complications,and the short-term clinical results of patients were satisfactory.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Remyelination Regulated by microRNAs in Neurodegenerative Diseases: A Review
Manjing LI ; Qi LI ; Qingsen RAN ; Kunni CHEN ; Xinke DU ; Lina YANG ; Chunxia NIE ; Qing YANG ; Yujie LI ; Ying CHEN ; Yajie WANG ; Xiaogang WENG ; Weiyan CAI ; Xiaoxin ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):223-231
Demyelination of the central nervous system often occurs in neurodegenerative diseases, such as multiple sclerosis (MS). The myelin sheath, a layer of myelin membrane wrapping the axon, plays a role in the rapid conduction and metabolic coupling of impulses for neurons. The exposure of the axon will lead to axonal degeneratio, and further neuronal degeneration, which is the main cause of dysfunction and even disability in patients with demyelinating neurodegenerative diseases. In addition to the demyelination of mature myelin sheath, remyelination disorder is also one of the major reasons leading to the development of the diseases. The myelin sheath is composed of oligodendrocytes (OLs) derived from oligodendrocyte progenitor cells (OPCs) which are differentiated from neural stem cells (NSCs). The process of myelin regeneration, i.e., remyelination, is the differentiation of NSCs into OLs. Recent studies have shown that this process is regulated by a variety of genes. MicroRNAs, as important regulators of neurodegenerative diseases, form a complex regulatory network in the process of myelin regeneration. This review summarizes the main molecular pathways of myelin regeneration and microRNAs involved in this process and classifies the mechanisms and targets. This review is expected to provide a theoretical reference for the future research on the treatment of demyelinating diseases by targeting the regulation of microRNAs.
5.Development of a new method for efficiently isolating exosomes from cell culture supernatant
Chinese Journal of Biologicals 2024;37(8):975-982+988
ObjectiveTo develop a rapid,simple and efficient method for isolating exosomes from cell culture supernatant,so as to promote the application of exosomes in clinical and disease treatment.MethodsA new exosomes extraction system was developed by combining hydroxyl(OH)modified magnetic beads with the polymeric compound Buffer EXD,and the exosomes were extracted from cell culture supernatant by using this system. The expression of exosome marker proteins was detected by Western blot,the particle size and concentration of exosomes were measured by nanoparticles tracking analysis(NTA),and the morphology and structure were determined by transmission electron microscope(TEM). In addition,the extraction methods of exosomes by Buffer EXD system were optimized(pH,Buffer EXD ratio,incubation time,magnetic bead dosage and type),and the effect of exosomes purified by the new system on the proliferation of A549 cells was analyzed by combining cell culture with photomicrograph.ResultsIn exosomes purified by the new system,the expression levels of marker proteins Alix,CD9 and CD81 were high,while the expression level of exosome negative protein Calnexin was low. The exosomes extracted by the new system had a particle size peak of around 100 nm and a classical saucer-like shape. When the new system pH was 5. 0,Buffer EXD concentration was 20%,and 1. 75% OH magnetic beads were incubated with samples for 40 min,the content of marker proteins in exosomes was the highest. Additionally,the exosomes purified by the new system significantly facilitated the proliferation of A549 cells.ConclusionUsing OH-modified magnetic beads as the medium,combined with polymeric compound Buffer EXD,a new system was successfully established,which can isolate exosomes with complete structure,obvious morphological characteristics and biological functions from cell culture supernatant rapidly,simply and efficiently.
6.Screening Effective Sites of Momordicae Semen-Epimedii Folium and Anti-lung Cancer Mechanism of Its Prescription
Yuanlong ZANG ; Jun LI ; Rui ZENG ; Xihe CUI ; Qing YANG ; Xiaoxin ZHU ; Yajie WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):17-25
ObjectiveTo preliminarily confirm the effective anti-lung cancer sites of Momordicae Semen and Epimedii Folium and study their mechanism of action. MethodOn the basis of preliminary research, the extraction method of Momordicae Semen and Epimedii Folium was optimized and the effective parts were screened under the guidance of pharmacological effects. Different ethanol elution and water elution sites of Momordicae Semen and Epimedii Folium were obtained through adsorption and elution with D101 macroporous resin. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) colorimetric assay was used to detect the effects of total drug extracts and different elution sites on the proliferation of various tumor cell lines, and to screen for the optimal elution site and tumor sensitive strains. Flow cytometry was used to detect the effect of the elution sites of Momordicae Semen and Epimedii Folium on intracellular reactive oxygen species (ROS) and apoptosis in A549 cells. Western blot was used to compare the expressions of tumor protein 53 (p53), Bcl-2-associated X protein (Bax), cysteinyl aspartate specific proteinase-3 and 9 (Caspase-3 and Caspase-9) proteins in A549 cells. ResultThe inhibitory effect of Momordicae Semen on the proliferation of A549 cells was better than the kernel of Momordicae Semen, with 50% inhibitory concentration (IC50) being (86.83±2.88) mg·L-1 and (95.10±18.13) mg·L-1, respectively. The effect of total extracts of Epimedii Folium on A549 anti proliferation IC50 value was (4.71±0.81) mg·L-1. The IC50 values of the 40%, 60%, and 80% ethanol and anhydrous ethanol eluted macroporous resins of the total extracts of Momordicae Semen and Epimedii Folium inhibiting A549 proliferation were (45.32±4.38)、 (14.95±0.73)、 (17.07±1.76)、 (14.46±2.35)、 (51.7±2.26)、 (12.37±0.67)、 (20.29±0.93)、 and (3.43±0.91) mg·L-1, respectively. Compared with the normal group, the 1∶1 combination of Momordicae Semen and Epimedii Folium inhibited A549 cell proliferation in a time-dependent and concentration-dependent manner. Compared with the normal group, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased intracellular ROS expression (P<0.01). Compared with the normal group, 12.5, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of A549 cell apoptosis (P<0.01). Compared with the normal group, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of p53 in A549 cells (P<0.01). Compared with the normal group, 12.5, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of Bax (P<0.01). Compared with the normal group, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly reduced the expressions of Caspase-3 and Caspase-9 (P<0.01). ConclusionThe anti-tumor effect of Momordicae Semen is better than that of the kernel of Momordicae Semen. The anti-tumor substances of Momordicae Semen and Epimedii Folium mainly concentrate in the 60% ethanol to anhydrous ethanol elution site. A549 cells are sensitive to the 1∶1 combination of Momordicae Semen and Epimedii Folium, which can effectively inhibit the cell proliferation. The mechanism may be related to increasing the generation of ROS in A549 cells, promoting their apoptosis, increasing the expressions of apoptotic proteins such as p53 and Bax, and reducing the expressions of Caspase-3 and Caspase-9.
7.Effects of Jiaohong Pills and Its Prescription on Scopolamine-induced Alzheimer's Disease Mice
Lijinchan DONG ; Weiyan CAI ; Li FENG ; Qing YANG ; Mengting LI ; Yanli WANG ; Hong ZHANG ; Qi LI ; Xiaogang WENG ; Yajie WANG ; Xiaoxin ZHU ; Xiaoru HU ; Ying CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):37-45
ObjectiveTo investigate the effects of Jiaohong pills (JHP) and its prescription, Pericarpium Zanthoxyli (PZ) and Rehmanniae Radix (RR) cognitive dysfunction in scopolamine-induced Alzheimer's disease (AD) mice and its mechanism through pharmacodynamic and metabolomics study. MethodThe animal model of AD induced by scopolamine was established and treated with PZ, RG and JHP, respectively. The effects of JHP and its formulations were investigated by open field test, water maze test, object recognition test, avoidance test, cholinergic system and oxidative stress related biochemical test. Untargeted metabolomics analysis of cerebral cortex was performed by ultra-performance liquid chromatography-Quadrupole/Orbitrap high resolution mass spectrometry (UPLC Q-Exactive Orbitrap MS). ResultThe behavioral data showed that, compared with the model group, the discrimination indexes of the high dose of JHP, PZ and RR groups was significantly increased (P<0.05). The staging rate of Morris water maze test in the PZ, RR, high and low dose groups of JHP was significantly increased (P<0.05, P<0.01), the crossing numbers in the PZ, JHP high and low dose groups were significantly increased (P<0.05, P<0.01); the number of errors in the avoidance test were significantly reduced in the PZ and high-dose JHP groups (P<0.01), and the error latencies were significantly increased in the JHP and its prescription drug groups (P<0.01). Compared with the model group, the activities of acetylcholinesterase in the cerebral cortex of the two doses of JHP group and the PZ group were significantly increased (P<0.05, P<0.01), and the activity of acetylcholinesterase in the high-dose JHP group was significantly decreased (P<0.05), and the level of acetylcholine was significantly increased (P<0.01). At the same time, the contents of malondialdehyde in the serum of the two dose groups of JHP decreased significantly (P<0.05, P<0.01). The results of metabolomics study of cerebral cortex showed that 149 differential metabolites were identified between the JHP group and the model group, which were involved in neurotransmitter metabolism, energy metabolism, oxidative stress and amino acid metabolism. ConclusionJHP and its prescription can antagonize scopolamine-induced cognitive dysfunction, regulate cholinergic system, and reduce oxidative stress damage. The mechanism of its therapeutic effect on AD is related to the regulation of neurotransmitter, energy, amino acid metabolism, and improvement of oxidative stress.
8.Effect of Compatibility of Wujiwan on Pharmacokinetics and Tissue Distribution of Representative Components
Yu DONG ; Ying CHEN ; Zipeng GONG ; Qing YANG ; Xiaogang WENG ; Yajie WANG ; Xiaoxin ZHU ; Chenhao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):105-113
ObjectiveTo study the plasma pharmacokinetics and tissue distribution of five representative components in Wujiwan, and to illustrate the difference of metabolism and tissue distribution before and after compatibility. MethodHealthy male SD rats were divided into four groups, including Wujiwan group(A group, 62.96 g·L-1), Coptidis Rhizoma group(B group, 38.4 g·L-1), processed Euodiae Fructus group(C group, 5.88 g·L-1) and fried Paeoniae Radix Alba group(D group, 18.68 g·L-1), with 65 rats in each group, and were administered the drugs according to the clinical dose of decoction pieces converted into the dose of the extracts. Then plasma, liver, small intestine and brain were taken at pharmacokinetic set time in each group after administration. Ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry was developed for the quantitative analysis of five representative components[berberine(Ber), palmatine(Pal), evodiamine(Evo), rutecarpine(Rut) and paeoniflorin(Pae)] in Wujiwan, their concentrations in plasma, liver, small intestine and brain were detected at different time, plasma samples were processed by protein precipitation, and tissue samples were pretreated by protein precipitation plus liquid-liquid extraction. Non-atrioventricular model was used to calculate the pharmacokinetic parameters of each component, and the parameters of each group were compared. ResultPharmacokinetic results of A group showed that area under the curve(AUC0-t) of the five representative components were ranked as follows:Ber and Pal were small intestine>liver>blood, Evo and Rut were liver>small intestine>plasma, Pae was small intestine>plasma, which was not detected in the liver, no other components were detected in brain except for Ber. In comparison with plasma and other tissues, peak concentration(Cmax) of Ber, Pal, Evo, and Rut were the highest and time to peak(tmax) were the lowest in the liver of A group. In plasma, the AUC0-t and Cmax of Evo and Rut were increased in A group compared with C group, tmax of Pea was elevated and its Cmax was decreased in A group compared with D group. In the liver, compared with B-D groups, Cmax values of 5 representative components except Pae were elevated, AUC0-t of Pae was decreased and AUC0-t of Evo and Rut were increased in the A group. In the small intestine, half-life(t1/2) of each representative components in A group was elevated and tmax was decreased, and Cmax of each representative ingredient except Pal was decreased, AUC0-t values of Ber and Pal were increased, whereas the AUC0-t values of Evo and Rut were decreased. ConclusionThe small intestine, as the effector organ, is the most distributed, followed by the liver. The pharmacokinetic parameters of the representative components in Wujiwan are changed before and after compatibility, which is more favorable to the exertion of its pharmacodynamic effects.
9.Innovation of Methods for Efficacy Evaluation of Traditional Chinese Medicine Compound Prescriptions: Establishment of Characterization System for Simultaneous Treatment/Regulation Based on Correlation Patterns of Five Zang-organs
Yujie LI ; Tuo LIU ; Luqi WANG ; Lina CHEN ; Yan LIANG ; Chengcheng LIU ; Yu LI ; Xiaoxin ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):19-26
The clinical efficacy advantages of traditional Chinese medicine (TCM) compound prescriptions have always been inadequately characterized in experimental research,which has become a bottleneck restricting the development of TCM pharmacology and even the progress of TCM. The concept of simultaneous treatment/regulation,guided by the theory of mutual generation and restriction of five zang-organs,has guiding significance in the clinical practice of TCM throughout history and is still widely used in the current clinical practice. However,this unique and clinically valuable diagnostic and therapeutic medication system based on the syndrome differentiation has been completely ignored in the modern research of TCM pharmacology,which might be one of the key factors restricting the pharmacological characterization of the therapeutic advantages of TCM compound prescriptions. On the basis of systematically summarizing the phased progress and achievements of the efficacy evaluation of TCM compound prescriptions,this article explores the path of exploring the pharmacological advantages of TCM compound prescriptions on simultaneous treatment/regulation on the basis of the correlation patterns of five zang-organs,from the theory of Zangxiang,the core concept of five zang-organs,and the TCM disease recognition based on the theory of mutual generation and restriction of five zang-organs. With the heart-lung correlation as a breakthrough point,this study explored a new characterization method for the pharmacological advantages of TCM,aiming to provide new ideas for evaluating the efficacy of TCM compound prescriptions.
10.Exploration of Therapeutic Effect of Wujiwan on Inflammatory Bowel Disease in Rats Based on PPARγ Signaling Pathway and T-cell Immunoregulation
Shiyun GUO ; Yuxuan GUO ; Yi SUN ; Xiaoxin ZHU ; Yujie LI ; Ying CHEN ; Qing YANG ; Yajie WANG ; Qi LI ; Xiaogang WENG ; Zhihao DENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):237-245
ObjectiveThis study explores the efficacy and pharmacological mechanism of Wujiwan in rats with inflammatory bowel disease (IBD) from the perspectives of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and T-cell immunity, providing reference for the treatment of IBD with traditional Chinese medicine. MethodThe study involved administering 2,4,6-trinitrobenzenesulfonic acid (TNBS) enemas to 35 rats to induce acute IBD. After 24 hours, the animals were divided into the following groups: normal group, model group, Wujiwan treatment group, and positive drug control group. Each group received gastric gavage for 8 consecutive days before the rats were dissected to compare the disease activity index (DAI) of the rat colon tissue, the colon mucosal damage index (CMDI), and the spleen index. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin-1β (IL-1β), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the serum. Quantitative real-time polymerase chain reaction (Real-time PCR) was used to determine the mRNA expression levels of T-bet (T-box expressed in T cells) and Gata3 (Gata-binding protein-3) in the colon tissue. Western blot analysis was conducted to detect the protein expression levels of PPARγ, T-bet, and nuclear factor-κB p65 (NF-κB p65) in the rat colon. ResultThe rat model of IBD was successfully established. Compared with the model group, the Wujiwan treatment group showed reduced DAI, CMDI, and spleen index, decreased content of TNF-α in the serum(P<0.01), significantly increased content of IL-10(P<0.01), and elevated mRNA content of T-bet and Gata3(P<0.05) in the colon tissue. The expression of PPARγ protein was augmented(P<0.05), and the expression of T-bet and NF-κB p65 protein was decreased(P<0.05,P<0.01). ConclusionWujiwan activates or upregulates PPARγ expression in IBD rats to inhibit the generation of pro-inflammatory factors, participates in the inflammatory immune process, and alleviates inflammatory reactions. Its mechanism may involve regulating the NF-κB pathway through PPARγ, enhancing Th2 cell transcription expression, and reducing Th1 cell transcription.


Result Analysis
Print
Save
E-mail