1.Dipsacus asper Treats Alzheimer's Disease in Caenorhabditis elegans by Regulating PPARα/TFEB Pathway
Mengmeng WANG ; Jianping ZHAO ; Limin WU ; Shuang CHU ; Yanli HUANG ; Zhenghao CUI ; Yiran SUN ; Pan WANG ; Hui WANG ; Zhenqiang ZHANG ; Zhishen XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):104-114
ObjectiveTo investigate the anti-Alzheimer's disease (AD) effect of Dipsacus asper(DA) in the Caenorhabditis elegans model, and decipher the underlying mechanism via the peroxisome proliferator-activated receptor α (PPARα)/transcription factor EB (TFEB) pathway. MethodsFirst, transgenic AD C. elegans individuals were assigned into the blank control, model, positive control (WY14643, 20 µmol·L-1), and low-, medium-, and high-dose (100, 200, and 400 mg·L-1, respectively) DA groups. The amyloid β-42 (Aβ42) formation in the muscle cells, the paralysis time, and the deposition of amyloid β-protein (Aβ) in the head were detected. The lysosomal autophagy in the BV2 cell model was examined by Rluc-LC3wt/G120A. The expression levels of lysosomal autophagy-related proteins LC3Ⅱ, LC3I, LAMP2, and TFEB were detected by Western blot. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to determine the mRNA levels of autophagy-related genes beclin1 and Atg5 and lysosome-related genes LAMP2 and CLN2 downstream of PPARα/TFEB. A reporter gene assay was used to detect the transcriptional activities of PPARα and TFEB. Immunofluorescence was used to detect the fluorescence intensity of PPARα, and the active components of the ethanol extract of DA were identified by UPLC-MS. RCSB PDB, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Autodock were used to analyze the binding between the active components and PPARα-ligand-binding domain (LBD). ResultsCompared with the model group, the positive control group and 200 and 400 mg·L-1 DA groups showed prolonged paralysis time (P<0.05), and all the treatment groups showed decreased Aβ deposition in the head (P<0.01). DA within the concentration range of 50-500 mg·L-1 did not affect the viability of BV2 cells. In addition, DA enhanced the autophagy flux (P<0.05), up-regulated the mRNA levels of beclin1, Atg5, LAMP2, and CLN2 (P<0.05, P<0.01), promoted the nuclear translocation of TFEB (P<0.05), increased LAMP2 expression and autophagy flux (P<0.05, P<0.01), and enhanced the transcriptional activities of PPARα and TFEB (P<0.01). The positive control group and 200 and 400 mg·L-1 DA groups showed enhanced fluorescence intensity of PPARα in the BV2 nucleus (P<0.01). UPLC-MS detected nine known compounds of DA, from which 8 active components of DA were screened out. The docking results suggested that a variety of components in DA could bind to PPARα-LBD and form stable hydrogen bonds. ConclusionDA may reduce the pathological changes in AD by regulating the PPARα-TFEB pathway.
2.The influence of ASiR-V algorithm on radiation dose and image quality in children’s ultra-low-dose chest CT examination
Limin WANG ; Xiumin LYU ; Yanping WANG ; Lulu XU
Chinese Journal of Radiological Health 2025;34(4):540-545
Objective To explore the impact of multi-model adaptive statistical iterative reconstruction (ASiR-V) algorithm on radiation dose and image quality in children’s ultra-low-dose chest CT examination. Methods A total of 72 children who underwent chest CT scans at Qingdao Municipal Hospital with admissions between January 2024 and January 2025 were selected as subjects and divided into two groups using a random number table. In the control group (n = 36), the tube voltage was set at 100 kVp and the conventional filtered back projection algorithm was used. In the observation group (n = 36), the tube voltage was set at 80 kVp and images were reconstructed using 30% ASiR-V (observation group 1), 60% ASiR-V (observation group 2), and 90% ASiR-V (observation group 3), respectively. Radiation doses were recorded for each group, and both subjective and objective evaluations of image quality were conducted. Results Compared with the control group, the observation group demonstrated significantly lower volume CT dose index [(0.86 ± 0.09) mGy], dose length product [(25.90 ± 3.55) mGy·cm], and effective dose [(0.01 ± 0.001) mSv] (P < 0.05). There was no significant difference in subjective evaluation scores of image quality among the four groups (z = −2.206, P = 0.530). Additionally, Fisher’s exact test showed that the proportion of images scoring 4-5 points was higher in observation group 2 than in observation group 3 (P = 0.024). The noise value of the ascending aorta in the mediastinal window and the noise values of the right and left middle lung fields and the right and left upper lung fields in the lung window were lower in observation groups 2 and 3 than in the control group, and these values were lower in observation group 3 than in observation group 2 (P < 0.05). The signal-to-noise ratios of the ascending aorta and liver in observation groups 2 and 3 were higher than those in the control group, and the ratios were higher in observation group 3 than in observation group 2 (P < 0.05). Conclusion Reconstruction using the 60% ASiR-V algorithm for pediatric ultra-low-dose chest CT examination can ensure good image quality while reducing radiation dose and improving examination safety.
3.Practice pathway and effectiveness evaluation of GCP resident pharmacists in the management of dermatolo-gical drug clinical trials
Yunlong WANG ; Limin ZHOU ; Hua ZHANG ; Quanchao LI
China Pharmacy 2025;36(20):2507-2511
OBJECTIVE To explore the practice pathway and evaluate the effectiveness of the resident pharmacists stationed in the Drug Clinical Trial Institution Office (hereinafter referred to as the “GCP resident pharmacist”) in the management of dermatological drug clinical trials. METHODS The practical approach of GCP resident pharmacists participating in dermatological drug clinical trials at our hospital was introduced. A retrospective analysis was conducted on the data of dermatological drug clinical trials from 2021 to 2024, comparing efficiency and quality indicators between dermatological clinical trials and those of other specialties. RESULTS With the involvement of our hospital’s GCP resident pharmacists throughout, the process for dermatology drug clinical trials was constructed and optimized, a dedicated quality control system was established, and the acceleration strategy for subject enrollment was optimized. The number of dermatological drug clinical trials at our hospital showed a compound annual growth rate of 69.56% from 2021 to 2023. In terms of efficiency indicators, the approval waiting time for dermatological drug clinical trials was (12.31±4.99) days, which was significantly shorter than that of other specialties ([ 19.68±6.09) days, P<0.05]. Regarding quality indicators, the enrollment rate for dermatological drug clinical trials was 75.71%(50.00%,114.48%), which was significantly higher than that of other specialties [51.00%(25.00%,174.17%), P<0.05]. The numbers of first quality control issues ([ 8.31±3.25)items vs.( 11.68±4.49)items] and protocol deviations [5.5(2.0,11.0)times vs. 11.0(5.5,17.5)times] were significantly lower than those of other specialties (P<0.05). CONCLUSIONS GCP resident pharmacists significantly enhance the overall efficiency of dermatological drug clinical trials, playing a crucial role in ensuring the reliability and authenticity of drug clinical trials, as well as safeguarding the rights and safety of trial subjects.
4.Salidroside alleviates PM2.5-induced pulmonary fibrosis through PINK1/Parkin
Ruixi ZHOU ; Wenbo WU ; Limin ZHANG ; Meina WU ; Chen LIU ; Siqi LI ; Xiaohong LI ; Mengxiao LUAN ; Qin WANG ; Li YU ; Yumei LIU ; Wanwei LI
Journal of Environmental and Occupational Medicine 2025;42(10):1240-1246
Background Existing studies have confirmed that fine particulate matter (PM2.5)is one of the important factors inducing pulmonary fibrosis. Pulmonary fibrosis is the terminal stage of a major category of lung diseases characterized by the destruction of tissue structure, and eventually leading lung ventilation and ventilation dysfunction. No effective pulmonary fibrosis treatment is available yet. Objective To investigate the protective effect of salidroside on pulmonary fibrosis induced by the exposure of PM2.5 and its molecular mechanism. Methods Seventy 7-week-old male C57BL/6 mice were randomly divided into four groups: control group (intratracheal instillation of normal saline + saline by gavage, n=25), Sal group (intratracheal instillation of normal saline + Sal 60 mg·kg−1 by gavage, n=10), PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 + saline by gavage, n=10), and Sal + PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 +Sal 60 mg·kg−1 by gavage, n=10). The mice were administered by gavage once daily, intratracheal instillation once every 3 d, and every 3 d constituted an experimental cycle. At the end of the 26-30th cycles, 3 mice in the control group and 3 mice in the PM2.5 group were randomly sacrificed, and the lung tissues were collected for Masson staining to verify whether the pulmonary fibrosis model was successfully established. After 30 cycles, the model was successfully constructed. After 1 week of continuous observation, the mice were sacrificed, and the blood and lung tissues of the mice were collected to make lung tissue sections. Assay kits were correspondingly employed to detect oxidative stress indicators such as serum malondialdehyde (MDA) and superoxide dismutase (SOD). Western blotting was used to detect the expression of fibrosis-related proteins (Collagen-III, α-SMA), mitochondrial dynamics-related proteins (MFN1, Drp1), and mitophagy-related proteins (PINK1, Parkin, and LC3). Results Compared with the control group, the weight gain rate of the PM2.5 group was slowed down (P<0.05), which was alleviated by the Sal intervention (P<0.05). The lung coefficient increased after the PM2.5 exposure (P<0.05), which was alleviated by Sal intervention. Compared with the control group, the PM2.5 group showed severe alveolar structure damage, inflammatory cell infiltration, and blue collagen deposition, and significantly increased the lung injury score, collagen volume fraction (CVF), Szapiel score, and Ashcroft score (P<0.05), as well as serum oxidative stress levels (P<0.05). The protein expression levels of Collagen-III, α-SMA, Drp1, PINK1, Parkin, and LC3 II/I were increased (P<0.05), and the expression of MFN1 was decreased (P<0.05). Compared with the PM2.5 group, the Sal intervention alleviated lung injury, reduced inflammatory cell infiltration and collagen deposition, showing decreased lung injury score, CVF, Szapiel score, and Ashcroft score (P<0.05), and decreased serum oxidative stress levels (P<0.05); the protein expression levels of Collagen-III, α-SMA, PINK1, Parkin, and LC3 II/I were decreased (P<0.05), the expression level of Drp1 was decreased, and the expression level of MFN1 was increased. Conclusion In the process of pulmonary fibrosis induced by PM2.5 exposure in mice, Sal may affect mitochondrial autophagy through PINK1/Parkin pathway and play a protective role. The specific mechanism needs to be further verified.
5.Whole-liver intensity-modulated radiation therapy as a rescue therapy for acute graft-versus-host disease after liver transplantation.
Dong CHEN ; Yuanyuan ZHAO ; Guangyuan HU ; Bo YANG ; Limin ZHANG ; Zipei WANG ; Hui GUO ; Qianyong ZHAO ; Lai WEI ; Zhishui CHEN
Chinese Medical Journal 2025;138(1):105-107
6.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
7.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
8.Clinical value of joint detection of cerebrospinal fluid and blood routine indicators in differentiating between multiple gliomas and primary central nervous system lymphoma
Hua JIANG ; Limin ZHANG ; Dan WANG ; Ping HAN ; Yuehong SUN ; Yuwen LI ; Chenxi ZHANG ; Wencan JIANG ; Xiao LI ; Hui ZHAO
The Journal of Practical Medicine 2024;40(13):1864-1868,1873
Objective To investigate the clinical significance of combined cerebrospinal fluid(CSF)and routine blood parameter analysis in differentiating between multiple cerebral glioma(MCG)and primary central nervous system lymphoma(PCNSL).Methods We Rretrospectively analyzed the clinical data,CSF and routine blood indicators levels of 62 MCG patients and 56 PCNSL patients admitted to Beijing Tiantan Hospital,Capital Medical University from November 2017 to March 2023.Additionally,we assessed the diagnostic value of individual meaningful indicators as well as their combinations in distinguishing between MCG and PCNSL.Results The levels of CSF total cell count,CSF white cell count,CSF:pro,lactate,routine bloodperipheral neutrophil count,and neu-trophil percentage were significantly higher in the MCG group than in the PCNSL group(P<0.05);while the levels of CSF:Glu,CSF:cl,routine blood lymphocyte count,eosinophil,lymphocyte percentage,and eosinophil percent-age were significantly higher in the PCNSL group than in the MCG group(P<0.05).The AUCs of CSF cell count,CSF white cell count,CSF:pro,lactate,routine blood neutrophil count,neutrophil percentage for differentiating MCG from PCNSL were 0.900,0.899,0.797,0.867,0.828 and 0.772 respectively;sensitivities were 72.4%,77.6%,63.8%,67.2%,72.4%,82.8%,77.6%and 81%,with sensitivities of 97.1%,100%,88.2%,91.2%,88.2%,64.7%,100%and 94.1%,respectively.In addition,the combined detection of CSF total cell count,CSF white cell count,CSF:pro,routine blood neutrophil count and neutrophil percentage in CSF had an AUC of 0.919 for differentiating MCG from PCNSL,with a sensitivity and specificity of 77.6%and 100%,respectively.Conclusions Combined detection of CSF indicators including CSF total cell count,CSF white cell count,CSF:pro,along with routine blood markers such as neutrophil count and neutrophil percentage,holds significant clinical utility for differ-entiating between MCG and PCNSL.
9.Mediating effect of hypertension on risk of stroke associated with hyperuricemia
Lan WANG ; Mei ZHANG ; Zhenping ZHAO ; Chun LI ; Zhengjing HUANG ; Xiao ZHANG ; Jiangmei LIU ; Jinlei QI ; Taotao XUE ; Limin WANG ; Yaoguang ZHANG
Chinese Journal of Epidemiology 2024;45(2):192-199
Objective:To investigate the association between hyperuricemia and the risk for stroke occurrence, as well as the mediating effect of hypertension on this association.Methods:In this study, the China Chronic Diseases and Nutrition Surveillance system in 2015 was used as baseline data. We identified hospital admissions for stroke using the electronic homepage of inpatient medical records from 2013-2020, and death data were obtained from the 2015-2020 National Mortality Surveillance System. A retrospective cohort was established after matching and linking the database. The Cox proportional hazard regression model was used to analyze the relationship between hyperuricemia and the risk of stroke and its subtypes. Restricted cubic spline analysis was conducted to examine the dose-response relationship between serum uric acid levels and the risk for stroke. Mediation analysis was performed to investigate the mediating effect of hypertension on the association between hyperuricemia and the risk for stroke and its subtypes. Subgroup analyses were conducted based on gender and age groups.Results:A total of 124 352 study subjects were included, with an accumulative follow-up time of 612 911.36 person-years. During the follow-up period, 4 638 cases of stroke were found, including 3 919 cases of ischemic stroke and 689 cases of hemorrhagic stroke. The incidence density of stroke was 756.72 per 100 000 person-years, 641.37 per 100 000 person-years for ischemic stroke, and 114.60 per 100 000 person-years for hemorrhagic stroke. Multivariable Cox proportional hazards regression models showed that after adjusting for covariates, compared to those without hyperuricemia, individuals with hyperuricemia had a 16% higher risk for stroke [hazard ratio ( HR)=1.16, 95% CI: 1.06-1.27], a 12% higher risk of ischemic stroke ( HR=1.12, 95% CI: 1.01-1.24), and a 39% higher risk of hemorrhagic stroke ( HR=1.39, 95% CI: 1.11-1.75). Mediation analysis showed that hypertension partially mediated the associations between hyperuricemia and the risk for stroke, ischemic stroke, and hemorrhagic stroke, with mediation proportions of 36.07%, 39.98%, and 25.34%, respectively. The mediating effect is pronounced in the male population and individuals below 65. Conclusion:Hyperuricemia is a risk factor for stroke, and hypertension partially mediates the effect of hyperuricemia on stroke.
10.Moderating effect of salidroside on intestinal microbiota in mice exposed to PM2.5
Siqi LI ; Chen LIU ; Weihong XU ; Wenbo WU ; Ruixi ZHOU ; Limin ZHANG ; Chao SONG ; Yumei LIU ; Fengjiao TAN ; Mengxiao LUAN ; Xiaolin HAN ; Jinfeng TAN ; Li YU ; Dongqun XU ; Qin WANG ; Xiaohong LI ; Wanwei LI
Journal of Environmental and Occupational Medicine 2024;41(2):125-132
Background Salidroside (SAL) has a protective effect on multiple organ systems. Exposure to fine particulate matter (PM2.5) in the atmosphere may lead to disruptions in gut microbiota and impact intestinal health. The regulatory effect of SAL on the gut microbiota of mice exposed to PM2.5 requires further investigation. Objective To evaluate gut microbiota disruption in mice after being exposed to PM2.5 and the potential effect of SAL. Methods Forty male C57BL/6 mice, aged 6 to 8 weeks, were randomly divided into four groups: a control group, an SAL group, a PM2.5 group, and an SAL+PM2.5 group, each containing 10 mice. In the SAL group and the SAL+PM2.5 group, the mice were administered SAL (60 mg·kg−1) by gavage, while in the control group and the PM2.5 group, sterile saline (10 mL·kg−1) was administered by gavage. In the PM2.5 group and the SAL+PM2.5 group, PM2.5 suspension (8 mg·kg−1) was intratracheally instilled, and in the control group and SAL group, sterile saline (1.5 mL·kg−1) was intratracheally administered. Each experiment cycle spanned 2 d, with a total of 10 cycles conducted over 20 d. Histopathological changes in the ileum tissue of the mice were observed after HE staining. Colon contents were collected for gut microbiota sequencing and short-chain fatty acids (SCFAs) measurements. Results The PM2.5 group showed infiltration of inflammatory cells in the ileum tissue, while the SAL+PM2.5 group exhibited only a small amount of inflammatory cell infiltration. Compared to the control group, the PM2.5 group showed decreased Shannon index (P<0.05) and increased Simpson index (P<0.05), indicating that the diversity of gut microbiota in this group was decreased; the SAL+PM2.5 group showed increased Shannon index compared to the PM2.5 group (P<0.05) and decreased Simpson index (P<0.05), indicating that the diversity of gut microbiota in mice intervened with SAL was increased. The principal coordinates analysis (PCoA) revealed a significant separation between the PM2.5 group and the control group, while the separation trend was less evident among the control group, the SAL group, and the SAL+PM2.5 group. The unweighted pair-group method with arithmetic means (UPGMA) clustering tree results showed that the control group and the SAL group clustered together first, followed by clustering with the SAL+PM2.5 group, and finally, the three groups clustered with the PM2.5 group. The PCoA and UPGMA clustering results indicated that the uniformity and similarity of the microbiota in the PM2.5 group were significantly decreased. Compared to the control group, the PM2.5 group showed decreased abundance of phylum Bacteroidetes and Candidatus_Saccharimonas (P<0.05) and increased abundance of phylum Proteobacteria, genus Escherichia, genus Bacteroides, genus Prevotella, genus Enterococcus, and genus Proteus (P<0.05). Compared to the PM2.5 group, the SAL+PM2.5 group showed decreased abundance of phylum Proteobacteria, phylum Actinobacteria, genus Prevotella, and genus Proteus (P<0.05), and increased abundance of Candidatus_Saccharimonas (P<0.05). The PM2.5 group showed reduced levels of propionic acid, valeric acid, and hexanoic acid compared to the control group (P<0.05), while the SAL+PM2.5 group showed increased levels of propionic acid, isobutyric acid, butyric acid, valeric acid, and hexanoic acid compared to the PM2.5 group (P<0.05). Conclusion Exposure to PM2.5 can cause pathological alterations, microbial dysbiosis, and disturbing production of SCFAs in intestinal tissue in mice. However, SAL can provide a certain degree of protective effect against these changes.

Result Analysis
Print
Save
E-mail