1.Shashen Maidong Tang Enhances Efficacy of Chemotherapy in Mouse Model of Lewis Lung Cancer by Modulating JAK2/STAT3 Signaling Pathway
Lin YU ; Yaoyao WANG ; Limin LIU ; Zuowei HU ; Yanping ZHOU ; Shang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):1-10
ObjectiveTo predict the mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer via network pharmacology and validate the prediction results in animal experiments. MethodsThe potential mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer was predicted by network pharmacology, liquid chromatography-mass spectrometry (LC-MS), and molecular docking methods. C57/BL6 mice were assigned into normal, model, cisplatin, and Shasheng Maidong Tang+cisplatin groups. In addition to the normal group, the remaining groups were injected subcutaneously with 0.2 mL of 1×107 cells·mL-1 Lewis lung cancer cells to establish the Lewis lung cancer model. The daily gavage dose of Shasheng Maidong Tang was 3.58 g·kg-1, and the concentration of cisplatin intraperitoneally injected on every other day was 2 mg·kg-1. Drugs were administered for 14 d. The changes in the tumor volume and the rate of tumor suppression were monitored, and the tumor histopathological changes were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay was employed to measure the interleukin (IL)-6 and interferon (IFN)-γ levels in peripheral blood. Real-time PCR was performed to quantify the mRNA levels of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3) in the tumor tissue of mice. Western blot was employed to determine the protein levels of JAK2, STAT3, B-cell lymphoma-2 (Bcl-2), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and Pim-1 proto1 (PIM1) in the tumor tissue. Immunohistochemistry was employed to detect the expression of Bcl-2 and PIM1 in the tumor tissue. ResultsNetwork pharmacological predictions indicated that Shasheng Maidong Tang might enhance the efficacy of chemotherapy for lung cancer by regulating nitrogen metabolism, AGE-RAGE signaling pathway, cancer pathway, and JAK/STAT signaling pathway. The experimental results demonstrated that tumor volume in the cisplatin group and Shasheng Maidong Tang+cisplatin group was reduced compared with the model group, with statistically distinct differences observed on days 14, 17, 20 post modeling (P<0.05). Notably, the Shasheng Maidong Tang+cisplatin therapy further decreased tumor volume compared with the cisplatin group, showing marked reductions on days 17 and 20 (P<0.05), consistent with trends visualized in tumor volume comparison charts. The Shasheng Maidong Tang+cisplatin group exhibited higher tumor inhibition rate than the cisplatin group (P<0.05). Histopathological analysis via HE staining revealed that the tumors in the model group displayed frequent nuclear mitosis, densely arranged cells, hyperchromatic nuclei, and no necrosis. Cisplatin treatment induced partial necrosis and vacuolization, while the Shasheng Maidong Tang+cisplatin group exhibited extensive necrotic regions, maximal vacuolization, disarranged tumor cells, and minimal mitotic activity. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed elevated level of IFN-γ (P<0.01) and declined level of IL-6 (P<0.01) in the peripheral blood. Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented elevated level of IFN-γ (P<0.01) and lowered level of IL-6 (P<0.01) in the peripheral blood. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin groups showed down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level STAT1 (P<0.01). Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level of STAT1 (P<0.01). Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), and STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). Compared with the cisplatin group, Shasheng Maidong Tang+cisplatin group presented down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). The Bcl-2 and PIM1 expression results obtained by immunohistochemistry were consistent with those of Western blot. ConclusionShasheng Maidong Tang may enhance the efficacy of chemotherapy in the mouse model of Lewis lung cancer by regulating the JAK2/STAT3 signaling pathway.
2.Dipsacus asper Treats Alzheimer's Disease in Caenorhabditis elegans by Regulating PPARα/TFEB Pathway
Mengmeng WANG ; Jianping ZHAO ; Limin WU ; Shuang CHU ; Yanli HUANG ; Zhenghao CUI ; Yiran SUN ; Pan WANG ; Hui WANG ; Zhenqiang ZHANG ; Zhishen XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):104-114
ObjectiveTo investigate the anti-Alzheimer's disease (AD) effect of Dipsacus asper(DA) in the Caenorhabditis elegans model, and decipher the underlying mechanism via the peroxisome proliferator-activated receptor α (PPARα)/transcription factor EB (TFEB) pathway. MethodsFirst, transgenic AD C. elegans individuals were assigned into the blank control, model, positive control (WY14643, 20 µmol·L-1), and low-, medium-, and high-dose (100, 200, and 400 mg·L-1, respectively) DA groups. The amyloid β-42 (Aβ42) formation in the muscle cells, the paralysis time, and the deposition of amyloid β-protein (Aβ) in the head were detected. The lysosomal autophagy in the BV2 cell model was examined by Rluc-LC3wt/G120A. The expression levels of lysosomal autophagy-related proteins LC3Ⅱ, LC3I, LAMP2, and TFEB were detected by Western blot. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to determine the mRNA levels of autophagy-related genes beclin1 and Atg5 and lysosome-related genes LAMP2 and CLN2 downstream of PPARα/TFEB. A reporter gene assay was used to detect the transcriptional activities of PPARα and TFEB. Immunofluorescence was used to detect the fluorescence intensity of PPARα, and the active components of the ethanol extract of DA were identified by UPLC-MS. RCSB PDB, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Autodock were used to analyze the binding between the active components and PPARα-ligand-binding domain (LBD). ResultsCompared with the model group, the positive control group and 200 and 400 mg·L-1 DA groups showed prolonged paralysis time (P<0.05), and all the treatment groups showed decreased Aβ deposition in the head (P<0.01). DA within the concentration range of 50-500 mg·L-1 did not affect the viability of BV2 cells. In addition, DA enhanced the autophagy flux (P<0.05), up-regulated the mRNA levels of beclin1, Atg5, LAMP2, and CLN2 (P<0.05, P<0.01), promoted the nuclear translocation of TFEB (P<0.05), increased LAMP2 expression and autophagy flux (P<0.05, P<0.01), and enhanced the transcriptional activities of PPARα and TFEB (P<0.01). The positive control group and 200 and 400 mg·L-1 DA groups showed enhanced fluorescence intensity of PPARα in the BV2 nucleus (P<0.01). UPLC-MS detected nine known compounds of DA, from which 8 active components of DA were screened out. The docking results suggested that a variety of components in DA could bind to PPARα-LBD and form stable hydrogen bonds. ConclusionDA may reduce the pathological changes in AD by regulating the PPARα-TFEB pathway.
3.The influence of ASiR-V algorithm on radiation dose and image quality in children’s ultra-low-dose chest CT examination
Limin WANG ; Xiumin LYU ; Yanping WANG ; Lulu XU
Chinese Journal of Radiological Health 2025;34(4):540-545
Objective To explore the impact of multi-model adaptive statistical iterative reconstruction (ASiR-V) algorithm on radiation dose and image quality in children’s ultra-low-dose chest CT examination. Methods A total of 72 children who underwent chest CT scans at Qingdao Municipal Hospital with admissions between January 2024 and January 2025 were selected as subjects and divided into two groups using a random number table. In the control group (n = 36), the tube voltage was set at 100 kVp and the conventional filtered back projection algorithm was used. In the observation group (n = 36), the tube voltage was set at 80 kVp and images were reconstructed using 30% ASiR-V (observation group 1), 60% ASiR-V (observation group 2), and 90% ASiR-V (observation group 3), respectively. Radiation doses were recorded for each group, and both subjective and objective evaluations of image quality were conducted. Results Compared with the control group, the observation group demonstrated significantly lower volume CT dose index [(0.86 ± 0.09) mGy], dose length product [(25.90 ± 3.55) mGy·cm], and effective dose [(0.01 ± 0.001) mSv] (P < 0.05). There was no significant difference in subjective evaluation scores of image quality among the four groups (z = −2.206, P = 0.530). Additionally, Fisher’s exact test showed that the proportion of images scoring 4-5 points was higher in observation group 2 than in observation group 3 (P = 0.024). The noise value of the ascending aorta in the mediastinal window and the noise values of the right and left middle lung fields and the right and left upper lung fields in the lung window were lower in observation groups 2 and 3 than in the control group, and these values were lower in observation group 3 than in observation group 2 (P < 0.05). The signal-to-noise ratios of the ascending aorta and liver in observation groups 2 and 3 were higher than those in the control group, and the ratios were higher in observation group 3 than in observation group 2 (P < 0.05). Conclusion Reconstruction using the 60% ASiR-V algorithm for pediatric ultra-low-dose chest CT examination can ensure good image quality while reducing radiation dose and improving examination safety.
4.Practice pathway and effectiveness evaluation of GCP resident pharmacists in the management of dermatolo-gical drug clinical trials
Yunlong WANG ; Limin ZHOU ; Hua ZHANG ; Quanchao LI
China Pharmacy 2025;36(20):2507-2511
OBJECTIVE To explore the practice pathway and evaluate the effectiveness of the resident pharmacists stationed in the Drug Clinical Trial Institution Office (hereinafter referred to as the “GCP resident pharmacist”) in the management of dermatological drug clinical trials. METHODS The practical approach of GCP resident pharmacists participating in dermatological drug clinical trials at our hospital was introduced. A retrospective analysis was conducted on the data of dermatological drug clinical trials from 2021 to 2024, comparing efficiency and quality indicators between dermatological clinical trials and those of other specialties. RESULTS With the involvement of our hospital’s GCP resident pharmacists throughout, the process for dermatology drug clinical trials was constructed and optimized, a dedicated quality control system was established, and the acceleration strategy for subject enrollment was optimized. The number of dermatological drug clinical trials at our hospital showed a compound annual growth rate of 69.56% from 2021 to 2023. In terms of efficiency indicators, the approval waiting time for dermatological drug clinical trials was (12.31±4.99) days, which was significantly shorter than that of other specialties ([ 19.68±6.09) days, P<0.05]. Regarding quality indicators, the enrollment rate for dermatological drug clinical trials was 75.71%(50.00%,114.48%), which was significantly higher than that of other specialties [51.00%(25.00%,174.17%), P<0.05]. The numbers of first quality control issues ([ 8.31±3.25)items vs.( 11.68±4.49)items] and protocol deviations [5.5(2.0,11.0)times vs. 11.0(5.5,17.5)times] were significantly lower than those of other specialties (P<0.05). CONCLUSIONS GCP resident pharmacists significantly enhance the overall efficiency of dermatological drug clinical trials, playing a crucial role in ensuring the reliability and authenticity of drug clinical trials, as well as safeguarding the rights and safety of trial subjects.
5.Salidroside alleviates PM2.5-induced pulmonary fibrosis through PINK1/Parkin
Ruixi ZHOU ; Wenbo WU ; Limin ZHANG ; Meina WU ; Chen LIU ; Siqi LI ; Xiaohong LI ; Mengxiao LUAN ; Qin WANG ; Li YU ; Yumei LIU ; Wanwei LI
Journal of Environmental and Occupational Medicine 2025;42(10):1240-1246
Background Existing studies have confirmed that fine particulate matter (PM2.5)is one of the important factors inducing pulmonary fibrosis. Pulmonary fibrosis is the terminal stage of a major category of lung diseases characterized by the destruction of tissue structure, and eventually leading lung ventilation and ventilation dysfunction. No effective pulmonary fibrosis treatment is available yet. Objective To investigate the protective effect of salidroside on pulmonary fibrosis induced by the exposure of PM2.5 and its molecular mechanism. Methods Seventy 7-week-old male C57BL/6 mice were randomly divided into four groups: control group (intratracheal instillation of normal saline + saline by gavage, n=25), Sal group (intratracheal instillation of normal saline + Sal 60 mg·kg−1 by gavage, n=10), PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 + saline by gavage, n=10), and Sal + PM2.5 group (intratracheal instillation of PM2.5 5 mg·kg−1 +Sal 60 mg·kg−1 by gavage, n=10). The mice were administered by gavage once daily, intratracheal instillation once every 3 d, and every 3 d constituted an experimental cycle. At the end of the 26-30th cycles, 3 mice in the control group and 3 mice in the PM2.5 group were randomly sacrificed, and the lung tissues were collected for Masson staining to verify whether the pulmonary fibrosis model was successfully established. After 30 cycles, the model was successfully constructed. After 1 week of continuous observation, the mice were sacrificed, and the blood and lung tissues of the mice were collected to make lung tissue sections. Assay kits were correspondingly employed to detect oxidative stress indicators such as serum malondialdehyde (MDA) and superoxide dismutase (SOD). Western blotting was used to detect the expression of fibrosis-related proteins (Collagen-III, α-SMA), mitochondrial dynamics-related proteins (MFN1, Drp1), and mitophagy-related proteins (PINK1, Parkin, and LC3). Results Compared with the control group, the weight gain rate of the PM2.5 group was slowed down (P<0.05), which was alleviated by the Sal intervention (P<0.05). The lung coefficient increased after the PM2.5 exposure (P<0.05), which was alleviated by Sal intervention. Compared with the control group, the PM2.5 group showed severe alveolar structure damage, inflammatory cell infiltration, and blue collagen deposition, and significantly increased the lung injury score, collagen volume fraction (CVF), Szapiel score, and Ashcroft score (P<0.05), as well as serum oxidative stress levels (P<0.05). The protein expression levels of Collagen-III, α-SMA, Drp1, PINK1, Parkin, and LC3 II/I were increased (P<0.05), and the expression of MFN1 was decreased (P<0.05). Compared with the PM2.5 group, the Sal intervention alleviated lung injury, reduced inflammatory cell infiltration and collagen deposition, showing decreased lung injury score, CVF, Szapiel score, and Ashcroft score (P<0.05), and decreased serum oxidative stress levels (P<0.05); the protein expression levels of Collagen-III, α-SMA, PINK1, Parkin, and LC3 II/I were decreased (P<0.05), the expression level of Drp1 was decreased, and the expression level of MFN1 was increased. Conclusion In the process of pulmonary fibrosis induced by PM2.5 exposure in mice, Sal may affect mitochondrial autophagy through PINK1/Parkin pathway and play a protective role. The specific mechanism needs to be further verified.
6.Whole-liver intensity-modulated radiation therapy as a rescue therapy for acute graft-versus-host disease after liver transplantation.
Dong CHEN ; Yuanyuan ZHAO ; Guangyuan HU ; Bo YANG ; Limin ZHANG ; Zipei WANG ; Hui GUO ; Qianyong ZHAO ; Lai WEI ; Zhishui CHEN
Chinese Medical Journal 2025;138(1):105-107
7.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
8.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
9.The chain mediating effect of perceived social support and work-family conflict fit on the relationship between self-efficacy and parenting stress of clinical nurses
Jing SHI ; Jihong FANG ; Jiafeng MIAO ; Jing ZHU ; Limin WANG
Chinese Journal of Practical Nursing 2024;40(26):2013-2021
Objective:To explore the mediation effects of perceived social support and work-family conflict on clinical nurses′ self-efficacy and parenting stress, and to provide theoretical basis for formulating intervention programs for parenting stress.Methods:A total of 631 clinical nurses from 8 grade A hospitals in Anhui Province were selected by convenience sampling method from August to October 2023. A cross-sectional survey was conducted with the general data questionnaire, the Chinese version of Work-Family Behavioral Role Conflict Scale, the Parenting Stress Scale for Clinical Nurses, the Perceptived Social Support Evaluation Scale and the General Self Efficacy Scale to analyze the relationship between perceptive social support, work-family conflict, self-efficacy and parenting stress and the mediating effect.Results:A total of 603 clinical nurses were included, including 9 males and 594 females, aged (35.16 ± 4.59) years. The total scores of work-family conflict, parenting stress, understanding of social support and self-efficacy were (87.10 ± 14.38), (51.00 ± 9.51), (59.91 ± 11.57) and (26.68 ± 6.27) points. The total effect of self-efficacy on parenting stress was - 0.385. The mediating paths of self-efficacy on parenting stress included: self-efficacy→perceived social support→parenting stress; self-efficacy→work-family conflict→parenting stress; self-efficacy→perceived social support→work-family conflict→parenting stress. The three indirect effects accounted for 18.69%, 53.72% and 16.87% of the total effect.Conclusions:Social support and work-family conflict have a chain mediation effect between clinical nurses′self-efficacy and parenting stress. Nursing managers can improve the self-efficacy of clinical nurses and enhance the understanding of social support to help reduce work-family conflict, so as to effectively alleviate the level of child-rearing stress of clinical nurses.
10.Trends in the case-fatality rates for acute myocardial infarction in China from 2015 to 2019
Liuxia YAN ; Lei HOU ; Xiaoning CAI ; Limin WANG ; Jing WU ; Xiaorong CHEN
Chinese Journal of Cardiology 2024;52(12):1405-1411
Objective:To assess the trends in case-fatality rates for acute myocardial infarction (AMI) in China from 2015 to 2019.Methods:This study employed a population-based surveillance. Data from the China Registry of Acute Cardiovascular Event (China RACE) were utilized, including AMI cases reported by Grade Ⅱ and Grade Ⅲ hospitals at the disease surveillance sites across China from January 1 st 2015 to December 31 st 2019. The 28-day mortality outcome for reported AMI events was obtained by linking to the national death certificate registry system. The study analyzed the overall and age-standardized case-fatality rates, as well as their annual percent change (APC), during the study period, stratified by gender, age, and region. Results:The overall 28-day case fatality rate for AMI was 28.97% (22 532/77 764) from 2015 to 2019. The age-standardized case-fatality rate for AMI declined significantly from 37.53% in 2015 to 18.58% in 2019, with an APC of -14.33% ( P=0.018). We observed a significant downward trend in case-fatality rates of AMI in both genders (both P<0.05). Among males, the case-fatality rate decreased more steeply in younger males compared to elder counterparts. The most marked decreases were seen in males aged<35 years and 35 to 44 years, with APC of -27.63% ( P=0.007) and -22.65% ( P=0.004), respectively. In females, we observed a relatively stable decrease in case-fatality across age groups. The age-standardized case-fatality rate of AMI in eastern and central China decreased significantly from 2015 to 2019, with the APC of -19.22% ( P=0.006) and -15.62% ( P=0.032) respectively. However, the age-standardized case-fatality rate of AMI in western China remained stable ( P=0.227). Conclusions:The prognosis of AMI has considerably improved from 2015 to 2019 in China, regardless of ages and gender. Inequality in case-fatality rates among geographic regions highlights the need for targeted strategies in AMI prevention in western regions.

Result Analysis
Print
Save
E-mail