1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
3.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
4.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
5.Quality evaluation of Xintong granules based on HPLC fingerprint and quantitative analysis of multi-components by single-marker method
Xide YE ; Xiaolong FENG ; Mingguo SHAO ; Linchun WAN ; Zhenyu HU ; Chunyu CHEN ; Yu WU ; Junwen BU ; Yuhang QIAN ; Fanqiang MENG
China Pharmacy 2025;36(15):1866-1870
OBJECTIVE To establish the HPLC fingerprint of Xintong granules and the quantitative analysis of multi- components by single-marker method (QAMS) to determine the contents of 7 components, so as to provide a scientific basis for their quality control. METHODS HPLC method was used to establish the fingerprints for 10 batches of Xintong granules (No. S1- S10), and similarity evaluation, cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) were performed. At the same time, the contents of seven components, including puerarin, daidzin, calycosin-7-O- β -D-glucoside, stilbene glycoside, naringin, icariin and tanshinone ⅡA, were determined by QAMS method, and were compared with the results of external standard method. RESULTS A total of 18 common peaks were marked and 7 peaks were identified in the HPLC fingerprints for 10 batches of Xintong granules, namely puerarin (peak 4), daidzin (peak 7), calycosin-7-O-β-D-glucoside (peak 9), stilbene glycoside (peak 10), naringin (peak 12), icariin (peak 17), and tanshinone ⅡA (peak 18); the similarities among them were more than 0.990, and CA and PLS-DA results showed that S4-S5,S8-S10,S1-S3 and S6-S7 were clustered into three categories, respectively. Using naringin as the internal standard, the contents of puerarin, daidzin, calycosin-7-O-β-D-glucoside, stilbene glycoside, icariin and tanshinone ⅡA were determined to be 7.868 1-10.181 2, 1.709 2-2.374 1, 0.285 2-0.326 3, 1.024 1- 1.523 9, 0.140 2-0.290 4, and 0.077 1-0.219 4 mg/g, respectively, by the QAMS. These results showed no significant differences compared to those obtained by the external standard method. CONCLUSIONS Established HPLC fingerprint and QAMS method are convenient, stable and accurate, which can provide a basis for the quality evaluation of Xintong granules.
6.Epidemiological characteristics of dengue fever in Shenzhen City in 2024
Jia WAN ; Cong NIU ; Wei LIU ; Liangqiang LIN ; Fan YANG ; Ziquan LÜ ; Zhen ZHANG ; Tiejian FENG ; Jianhua LU ; Dongfeng KONG
Chinese Journal of Schistosomiasis Control 2025;37(5):517-523
Objective To investigate the epidemiological characteristics of dengue fever in Shenzhen City in 2024, so as to provide insights into formulation of the preventive and control measures for dengue fever. Methods The epidemiological data of dengue cases reported in Shenzhen City in 2024 were extracted from the China Disease Prevention and Control Information System and field epidemiological survey data of dengue fever in Shenzhen City, and the temporal, regional and population distributions of dengue fever cases, source of acquire dengue virus infections, disease diagnosis and treatment and outbreaks were analyzed. The dengue virus nucleic acid was tested and the serotypes of dengue virus were characterized using real-time quantitative reverse transcription PCR (RT-qPCR) assay, and the dengue virus gene was sequenced using next-generation sequencing (NGS). In addition, the surveillance on the density of Aedes albopictus was performed using Breteau index (BI) and mosquito oviposition index (MOI). Results A total of 1 735 dengue fever cases were reported in Shenzhen City in 2024, including 952 local cases and 783 imported cases. Most imported dengue fever cases acquired infections from eight cities of Foshan, Guangzhou, Zhongshan, Jiangmen, Dongguan, Zhaoqing, Huizhou, and Zhuhai in the Pearl River Delta region (664 cases, 84.8% of total imported cases) into Baoan, Longgang, and Nanshan districts. The epidemic exhibited an early onset and rapid progression, peaking during the period between September and November (1 632 cases, 94.1% of total cases), and dengue fever cases were distributed across 73 subdistricts in 10 districts, with most cases reported in densely populated central and western regions. The dengue fever cases had a male-to-female ratio of 1.9∶1.0, and a median age of 37 (21) years, with a higher median age among local cases than among imported cases [40 (20) years vs. 33(15) years; Z = -10.30, P < 0.05]. Housework, unemployment, workers, and business service were predominant occupations (1 405 cases, 81.0% of total cases), and there was a significant difference in the constituent ratio of occupations between local and imported cases (χ2 = 92.30, P < 0.05). Among the 1 735 dengue fever cases, the median duration from onset to definitive diagnosis was 3.3 (2.9) days, and 1 686 cases (97.2%) were identified in healthcare facilities, with a low rate of hospitalization and isolation seen in 1 701 inpatients with available epidemiological data (485 cases, 28.5% of total inpatients). A total of 29 outbreaks of dengue fever occurred in Shenzhen City across 2024, which primarily in construction sites (27 outbreaks, 93.1% of total). Dengue virus type I was the dominant serotype causing dengue fever in Shenzhen City in 2024. Sequencing showed that the genomes of dengue virus from multiple dengue fever cases in Shenzhen City shared a high sequence homology with those from cities neighboring Shenzhen City, and there might be intra-city transmission of dengue virus among multiple construction sites in Shenzhen City. The Aedes albopictus density was significantly higher in Shenzhen City in 2024 than in 2023, peaking from May to September. The annual MOI values ranged from 0.9 to 14.0, and the BI values ranged from 0.6 to 6.0. Conclusions The overall epidemic of dengue fever was severe in Shenzhen City in 2024, which was greatly affected by case importation from neighboring cities, construction sites-centered local transmission, and the effectives of routine mosquito vector control was not satisfactory. Integrated dengue fever control measures should be implemented, focusing on regional joint prevention and control mechanisms, capacity building for mosquito vector control, addressing challenges in epidemic containment at construction sites, and strengthening case detection and management systems.
7.Cell components of tumor microenvironment in lung adenocarcinoma: Promising targets for small-molecule compounds.
Mingyu HAN ; Feng WAN ; Bin XIAO ; Junrong DU ; Cheng PENG ; Fu PENG
Chinese Medical Journal 2025;138(8):905-915
Lung cancer is one of the most lethal tumors in the world with a 5-year overall survival rate of less than 20%, mainly including lung adenocarcinoma (LUAD). Tumor microenvironment (TME) has become a new research focus in the treatment of lung cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. The various cellular components exert a different role in apoptosis, metastasis, or proliferation of lung cancer cells through different pathways, thus contributing to the treatment of adenocarcinoma and potentially facilitating novel therapeutic methods. This review summarizes the research progress on different cellular components with cell-cell interactions in the TME of LUAD, along with their corresponding drug candidates, suggesting that targeting cellular components in the TME of LUAD holds great promise for future theraputic development.
Humans
;
Tumor Microenvironment/drug effects*
;
Adenocarcinoma of Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Adenocarcinoma/metabolism*
;
Animals
;
Apoptosis/physiology*
8.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
9.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
10.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)

Result Analysis
Print
Save
E-mail