1.Cortical Mechanisms of Multisensory Linear Self-motion Perception.
Neuroscience Bulletin 2023;39(1):125-137
Accurate self-motion perception, which is critical for organisms to survive, is a process involving multiple sensory cues. The two most powerful cues are visual (optic flow) and vestibular (inertial motion). Psychophysical studies have indicated that humans and nonhuman primates integrate the two cues to improve the estimation of self-motion direction, often in a statistically Bayesian-optimal way. In the last decade, single-unit recordings in awake, behaving animals have provided valuable neurophysiological data with a high spatial and temporal resolution, giving insight into possible neural mechanisms underlying multisensory self-motion perception. Here, we review these findings, along with new evidence from the most recent studies focusing on the temporal dynamics of signals in different modalities. We show that, in light of new data, conventional thoughts about the cortical mechanisms underlying visuo-vestibular integration for linear self-motion are challenged. We propose that different temporal component signals may mediate different functions, a possibility that requires future studies.
Animals
;
Humans
;
Motion Perception/physiology*
;
Bayes Theorem
;
Optic Flow
;
Cues
;
Vestibule, Labyrinth/physiology*
;
Photic Stimulation
;
Visual Perception/physiology*
2.Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats.
Neuroscience Bulletin 2023;39(6):994-1008
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Mice
;
Animals
;
Zebrafish
;
Neurons/physiology*
;
Visual Perception/physiology*
3.Neural Integration of Audiovisual Sensory Inputs in Macaque Amygdala and Adjacent Regions.
Liang SHAN ; Liu YUAN ; Bo ZHANG ; Jian MA ; Xiao XU ; Fei GU ; Yi JIANG ; Ji DAI
Neuroscience Bulletin 2023;39(12):1749-1761
Integrating multisensory inputs to generate accurate perception and guide behavior is among the most critical functions of the brain. Subcortical regions such as the amygdala are involved in sensory processing including vision and audition, yet their roles in multisensory integration remain unclear. In this study, we systematically investigated the function of neurons in the amygdala and adjacent regions in integrating audiovisual sensory inputs using a semi-chronic multi-electrode array and multiple combinations of audiovisual stimuli. From a sample of 332 neurons, we showed the diverse response patterns to audiovisual stimuli and the neural characteristics of bimodal over unimodal modulation, which could be classified into four types with differentiated regional origins. Using the hierarchical clustering method, neurons were further clustered into five groups and associated with different integrating functions and sub-regions. Finally, regions distinguishing congruent and incongruent bimodal sensory inputs were identified. Overall, visual processing dominates audiovisual integration in the amygdala and adjacent regions. Our findings shed new light on the neural mechanisms of multisensory integration in the primate brain.
Animals
;
Macaca
;
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Visual Perception/physiology*
;
Amygdala/physiology*
;
Photic Stimulation
4.The functional role of temporal structure in human perception: behavioral evidence and neural correlates.
Rui-Chen HU ; Pei-Jun YUAN ; Yi JIANG ; Ying WANG
Acta Physiologica Sinica 2019;71(1):105-116
To extract the temporal structure of sensory inputs is of great significance to our adaptive functioning in the dynamic environment. Here we characterize three types of temporal structure information, and review behavioral and neural evidence bearing on the encoding and utilization of such information in visual and auditory perception. The evidence together supports a functional view that the brain not only tracks but also makes use of temporal structure from diverse sources for a broad range of cognitive processes, such as perception, attention, and unconscious information processing. These functions are implemented by brain mechanisms including neural entrainment, predictive coding, as well as more specific mechanisms that vary with the type of temporal regularity and sensory modality. This framework enriches our understanding of how the human brain promotes dynamic information processing by exploiting regularities in ubiquitous temporal structures.
Attention
;
Auditory Perception
;
Brain
;
physiology
;
Humans
;
Time Perception
;
Visual Perception
5.The underlying mechanism for the connection between visual long-term memory and visual working memory.
Yin ZHANG ; Teng-Fei LIANG ; Jiang-Tao CHEN ; Chao-Xiong YE ; Qiang LIU
Acta Physiologica Sinica 2019;71(1):62-72
Visual memory, mainly composed of visual long-term memory (VLTM) and visual working memory (VWM), is an important mechanism of human information storage. Since Baddeley proposed the multicomponent working memory model, the idea that VWM is independent of the VLTM system has been widely accepted. However, the new theoretical evidence suggested a close connection between VLTM and VWM. For instance, the three embedded components model describes the VLTM and VWM in the same framework, which suggests that VWM is only a distinct state of VLTM. On the one hand, the operating function of VWM is supported by the persistence of VLTM. On the other hand, the evidence from neuroimaging studies shows that VWM and VLTM tasks activate some same brain areas. In addition, the whole visual memory system shows a trend of processing from early visual cortex to prefrontal cortex. The present article not only reviews the current studies about the relationship between VLTM and VWM but also gives some forecasts for future studies.
Brain
;
physiology
;
Humans
;
Memory, Long-Term
;
Memory, Short-Term
;
Visual Cortex
;
physiology
;
Visual Perception
6.The cognitive neural mechanism of contour processing.
Acta Physiologica Sinica 2019;71(1):53-61
The core of visual processing is the identification and recognition of the objects relevant to cognitive behaviors. In natural environment, visual input is often comprised of highly complex 3-dimensional signals involving multiple visual objects. One critical determinant of object recognition is visual contour. Despite substantial insights on visual contour processing gained from previous findings, these studies have focused on limited aspects or particular stages of contour processing. So far, a systematic perspective of contour processing that comprehensively incorporates previous evidence is still missing. We therefore propose an integrated framework of the cognitive and neural mechanisms of contour processing, which involves three mutually interacting cognitive stages: contour detection, border ownership assignment and contour integration. For each stage, we provide an elaborated discussion of the neural properties, processing mechanism, and its functional interaction with the other stages by summarizing the relevant electrophysiological and human cognitive neuroscience evidence. Finally, we present the major challenges for further unraveling the mechanisms of visual contour processing.
Cognition
;
Form Perception
;
Humans
;
Visual Cortex
;
physiology
;
Visual Perception
7.The neural mechanism of visual contour integration.
Ya LI ; Yong-Hui WANG ; Sheng LI
Acta Physiologica Sinica 2019;71(1):45-52
The human visual system efficiently extracts local elements from cluttered backgrounds and integrates these elements into meaningful contour perception. This process is a critical step before object recognition, in which contours often play an important role in defining the shapes and borders of the to-be-recognized objects. However, the neural mechanism of the contour integration is still under debate. The investigation of the neural mechanism underlying contour integration could deepen our understanding of perceptual grouping in the human visual system and advance the development of the algorithms for image grouping and segmentation in computer vision. Here, we review two theoretical frameworks that were proposed over the past decades. The first framework is based on hardwired horizontal connection in primary visual cortex, while the second one emphasizes the role of recurrent connections within intra- and inter-areas. At the end of review, we also raise the unsolved issues that need to be addressed in future studies.
Form Perception
;
Humans
;
Models, Neurological
;
Pattern Recognition, Visual
;
Visual Cortex
;
physiology
;
Visual Perception
8.Neural mechanisms of visual feature binding.
Acta Physiologica Sinica 2019;71(1):33-44
Integrating different visual features into a coherent object is a central challenge for the visual system, which is referred as the binding problem. Firstly, this review introduces the conception of the binding problem and the theoretical and empirical controversies regarding whether and how the binding processes are implemented in visual system. Although many neurons throughout the visual hierarchy are known to code multiple features, feature binding is recruited by visual system. Feature misbinding (or illusory conjunction) is probably the most striking evidence for the existence of the binding mechanism. Next, this review summarizes some critical issues in feature binding literature, including early binding theories, late binding theories, neural synchrony theory, the feature integration theory and re-entry processing theory. Feature binding is not a fully automatic or bottom-up processing. Reentrant connection from higher visual areas to early visual cortex (top-down processes) plays a critical role in feature binding, especially in active feature binding (i.e. feature misbinding). In addition, with electrophysiology, electroencephalography (EEG), magnetoencephalography (MEG) and transcranial electric stimulation (tEs) approaches, recent studies explored both correlational and causal relations between brain oscillations and feature binding, suggesting that brain oscillations are of great importance for feature binding. Finally, this review discusses some potential problems and open questions associated with visual feature binding mechanisms which need to be addressed in future studies.
Brain
;
physiology
;
Electroencephalography
;
Humans
;
Magnetoencephalography
;
Neurons
;
physiology
;
Transcranial Direct Current Stimulation
;
Visual Cortex
;
physiology
;
Visual Perception
9.Neural mechanisms of visual selective attention.
Ling HUANG ; Meng-Sha LI ; Li-Juan WANG ; Xi-Lin ZHANG
Acta Physiologica Sinica 2019;71(1):11-21
Because of a limited capacity of information processing in the brain, the efficient processing of visual information requires selecting only a very small fraction of visual inputs at any given moment in time. Attention is the main mechanism that controls this selection process, namely selective attention. Selective attention is the mechanism by which the subset of incoming information is preferentially processed from the complex external environment. Research on selective attention has two key issues. One is what targets (inputs) are selected by attention. There are three different types of selective attention according to its selected target: space-based, feature-based, and object-based attention. Another issue is how selective attention is generated. There are two different types of selective attention according to its generating source: top-down and bottom-up attention. In this review, these two issues are introduced to systematically discuss the neural mechanism of visual selective attention.
Attention
;
Brain
;
physiology
;
Cognition
;
Humans
;
Visual Perception
10.Vernier But Not Grating Acuity Contributes to an Early Stage of Visual Word Processing.
Yufei TAN ; Xiuhong TONG ; Wei CHEN ; Xuchu WENG ; Sheng HE ; Jing ZHAO
Neuroscience Bulletin 2018;34(3):517-526
The process of reading words depends heavily on efficient visual skills, including analyzing and decomposing basic visual features. Surprisingly, previous reading-related studies have almost exclusively focused on gross aspects of visual skills, while only very few have investigated the role of finer skills. The present study filled this gap and examined the relations of two finer visual skills measured by grating acuity (the ability to resolve periodic luminance variations across space) and Vernier acuity (the ability to detect/discriminate relative locations of features) to Chinese character-processing as measured by character form-matching and lexical decision tasks in skilled adult readers. The results showed that Vernier acuity was significantly correlated with performance in character form-matching but not visual symbol form-matching, while no correlation was found between grating acuity and character processing. Interestingly, we found no correlation of the two visual skills with lexical decision performance. These findings provide for the first time empirical evidence that the finer visual skills, particularly as reflected in Vernier acuity, may directly contribute to an early stage of hierarchical word processing.
Adolescent
;
Decision Making
;
Female
;
Form Perception
;
physiology
;
Humans
;
Male
;
Pattern Recognition, Visual
;
physiology
;
Photic Stimulation
;
Reading
;
Semantics
;
Statistics as Topic
;
Visual Acuity
;
physiology
;
Vocabulary
;
Young Adult

Result Analysis
Print
Save
E-mail