1.Multi-gene molecular identification and pathogenicity analysis of pathogens causing root rot of Atractylodes lancea in Hubei province.
Tie-Lin WANG ; Yang XU ; Xiu-Fu WAN ; Zhao-Geng LYU ; Bin-Bin YAN ; Yong-Xi DU ; Chuan-Zhi KANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(7):1721-1726
To clarify the species, pathogenicity, and distribution of the pathogens causing the root rot of Atractylodes lancea in Hubei province, the tissue separation method was used to isolate the pathogens from root rot samples in the main planting areas of A. lancea in Hubei. Based on the preliminary identification of the Fusarium genus by the internal transcribed spacer(ITS) sequence, three housekeeping genes, EF1/EF2, Btu-F-FO1/Btu-F-RO1, and FF1/FR1, were amplified and sequenced. Subsequently, a phylogenetic tree was constructed based on these TEF gene sequences to classify the pathogens. The pathogenicity of these strains was determined using the root irrigation method. A total of 194 pathogen strains were isolated using the tissue separation method. Molecular identification using the three housekeeping genes identified the pathogens as F. solani, F. oxysporum, F. commune, F. equiseti, F. tricinctum, F. redolens, F. fujikuroi, F. avenaceum, F. acuminatum, and F. incarnatum. Among them, F. solani and F. oxysporum were the dominant strains, widely distributed in multiple regions, with F. solani accounting for approximately 54% of the total isolated strains and F. oxysporum accounting for approximately 34%. Other strains accounted for a relatively small proportion, totaling approximately 12%. The results of pathogenicity determination showed that there were certain differences in pathogenicity among strains. The analysis of the pathogenicity differentiation of the widely distributed F. solani and F. oxysporum strains revealed that these dominant strains in Hubei were mainly highly pathogenic. This study determined the species, pathogenicity, and distribution of the pathogens causing the root rot of A. lancea in Hubei province. The results provide a scientific basis for further understanding the root rot of A. lancea and its epidemic occurrence and scientifically preventing and controlling this disease.
Plant Diseases/microbiology*
;
Atractylodes/microbiology*
;
Phylogeny
;
Plant Roots/microbiology*
;
Fusarium/classification*
;
China
;
Virulence
;
Fungal Proteins/genetics*
2.Deciphering Virulence Factors of Hyper-Virulent Pseudomonas aeruginosa Associated with Meningitis.
Li Ling XIE ; Shuo LIU ; Yu Fan WANG ; Ming Chun LI ; Zhen Hua HUANG ; Yue MA ; Qi Lin YU
Biomedical and Environmental Sciences 2025;38(7):856-866
OBJECTIVE:
Pseudomonas aeruginosa( P. aeruginosa) is a prevalent pathogenic bacterium involved in meningitis; however, the virulence factors contributing to this disease remain poorly understood.
METHODS:
The virulence of the P. aeruginosa A584, isolated from meningitis samples, was evaluated by constructing in vitro blood-brain barrier and in vivo systemic infection models. qPCR, whole-genome sequencing, and drug efflux assays of A584 were performed to analyze the virulence factors.
RESULTS:
Genomic sequencing showed that A584 formed a phylogenetic cluster with the reference strains NY7610, DDRC3, Pa58, and Pa124. Its genome includes abundant virulence factors, such as hemolysin, the Type IV secretion system, and pyoverdine. A584 is a multidrug-resistant strain, and its wide-spectrum resistance is associated with enhanced drug efflux. Moreover, this strain caused significantly more severe damage to the blood-brain barrier than the standard strain, PAO1. qPCR assays further revealed the downregulation of the blood-brain barrier-associated proteins Claudin-5 and Occludin by A584. During systemic infection, A584 exhibited a higher capacity of brain colonization than PAO1 (37.1 × 10 6 CFU/g brain versus 2.5 × 10 6 CFU/g brain), leading to higher levels of the pro-inflammatory factors IL-1β and TNF-α.
CONCLUSION
This study sheds light on the virulence factors of P. aeruginosa involved in meningitis.
Pseudomonas aeruginosa/genetics*
;
Virulence Factors/metabolism*
;
Animals
;
Virulence
;
Mice
;
Pseudomonas Infections/microbiology*
;
Blood-Brain Barrier/microbiology*
;
Humans
;
Female
3.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
4.Study of the urban-impact on microbial communities and their virulence factors and antibiotic resistance genomes in the Nandu River, Haikou.
Yu Feng FAN ; Zhen Peng LI ; Xiao Jie YU ; Zhe LI ; Hai Jian ZHOU ; Ya Lin ZHANG ; Xiao Ting GAN ; De HUA ; Xin LU ; Biao KAN
Chinese Journal of Epidemiology 2023;44(6):974-981
Objective: To explore the changes in bacterial community structure, antibiotic resistance genome, and pathogen virulence genome in river water before and after the river flowing through Haikou City and their transmission and dispersal patterns and to reveal anthropogenic disturbance's effects on microorganisms and resistance genes in the aquatic environment. Methods: The Nandu River was divided into three study areas: the front, middle and rear sections from the upstream before it flowed through Haikou City to the estuary. Three sampling sites were selected in each area, and six copies of the sample were collected in parallel at each site and mixed for 3 L per sample. Microbial community structure, antibiotic resistance, virulence factors, and mobile genetic elements were analyzed through bioinformatic data obtained by metagenomic sequencing and full-length sequencing of 16S rRNA genes. Variations in the distribution of bacterial communities between samples and correlation of transmission patterns were analyzed by principal co-ordinates analysis, procrustes analysis, and Mantel test. Results: As the river flowed through Haikou City, microbes' alpha diversity gradually decreased. Among them, Proteobacteria dominates in the bacterial community in the front, middle, and rear sections, and the relative abundance of Proteobacteria in the middle and rear sections was higher than that in the front segment. The diversity and abundance of antibiotic resistance genes, virulence factors, and mobile genetic elements were all at low levels in the front section and all increased significantly after flow through Haikou City. At the same time, horizontal transmission mediated by mobile genetic elements played a more significant role in the spread of antibiotic-resistance genes and virulence factors. Conclusions: Urbanization significantly impacts river bacteria and the resistance genes, virulence factors, and mobile genetic elements they carry. The Nandu River in Haikou flows through the city, receiving antibiotic-resistant and pathogen-associated bacteria excreted by the population. In contrast, antibiotic-resistant genes and virulence factors are enriched in bacteria, which indicates a threat to environmental health and public health. Comparison of river microbiomes and antibiotic resistance genomes before and after flow through cities is a valuable early warning indicator for monitoring the spread of antibiotic resistance.
Humans
;
Rivers
;
Virulence Factors/genetics*
;
RNA, Ribosomal, 16S/genetics*
;
Microbiota/genetics*
;
Anti-Bacterial Agents
;
Drug Resistance, Microbial/genetics*
6.Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China.
Zilan XIAO ; Jianping DENG ; Xiaojun ZHOU ; Liyan ZHU ; Xiaochan HE ; Jingwu ZHENG ; Deping GUO ; Jingze ZHANG
Journal of Zhejiang University. Science. B 2022;23(4):328-338
The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (β-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (β-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.
Pantoea/genetics*
;
Plant Diseases/microbiology*
;
Poaceae/microbiology*
;
Virulence
7.Genetic Diversity, Antibiotic Resistance, and Pathogenicity of Aeromonas Species from Food Products in Shanghai, China.
Feng Tian QU ; Wen Qing WANG ; Qian LIU ; Hai Jian ZHOU ; Jin Rui HU ; Xiao Li DU ; Yue WANG ; Jia Qi XUE ; Zhi Gang CUI ; Gui Lin XIE ; Shuang MENG
Biomedical and Environmental Sciences 2022;35(9):842-853
OBJECTIVE:
Aeromonas has recently been recognized as an emerging human pathogen. Aeromonas-associated diarrhea is a phenomenon occurring worldwide. This study was designed to determine the prevalence, genetic diversity, antibiotic resistance, and pathogenicity of Aeromonas strains isolated from food products in Shanghai.
METHODS:
Aeromonas isolates ( n = 79) collected from food samples were analyzed using concatenated gyrB- cpn60 sequencing. The antibiotic resistance of these isolates was determined using antimicrobial susceptibility testing. Pathogenicity was assessed using β-hemolytic, extracellular protease, virulence gene detection, C. elegans liquid toxicity (LT), and cytotoxicity assays.
RESULTS:
Eight different species were identified among the 79 isolates. The most prevalent Aeromonas species were A. veronii [62 (78.5%)], A. caviae [6 (7.6%)], A. dhakensis [3 (3.8%)], and A. salmonicida [3 (3.8%)]. The Aeromonas isolates were divided into 73 sequence types (STs), of which 65 were novel. The isolates were hemolytic (45.6%) and protease-positive (81.0%). The most prevalent virulence genes were act (73.4%), fla (69.6%), aexT (36.7%), and ascV (30.4%). The results of C. elegans LT and cytotoxicity assays revealed that A. dhakensis and A. hydrophila were more virulent than A. veronii, A. caviae, and A. bivalvium. Antibiotic resistance genes [ tetE, blaTEM, tetA, qnrS, aac(6)-Ib, mcr -1, and mcr-3] were detected in the isolates. The multidrug-resistance rate of the Aeromonas isolates was 11.4%, and 93.7% of the Aeromonas isolates were resistant to cefazolin.
CONCLUSION
The taxonomy, antibiotic resistance, and pathogenicity of different Aeromonas species varied. The Aeromonas isolates A. dhakensis and A. hydrophila were highly pathogenic, indicating that food-derived Aeromonas isolates are potential risks for public health and food safety. The monitoring of food quality and safety will result in better prevention and treatment strategies to control diarrhea illnesses in China.
Aeromonas/genetics*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Caenorhabditis elegans
;
Cefazolin
;
China/epidemiology*
;
Diarrhea
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Genetic Variation
;
Humans
;
Peptide Hydrolases/genetics*
;
Virulence/genetics*
8.Phylogenetic and pathogenicity analysis of influenza B virus strain B/Guangxi-Jiangzhou/1352/2018.
Qingxin MENG ; Pengtao JIAO ; Lei SUN ; Dayan WANG ; Tingrong LUO ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2022;38(9):3390-3405
Influenza B virus (IBV) is more likely to cause complications than influenza A virus (IAV) and even causes higher disease burden than IAV in a certain season, but IBV has received less attention. In order to analyze the genetic evolution characteristics of the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018), we constructed genetic evolution trees and analyzed the homology and different amino acids of hemagglutinin and neuraminidase referring to the vaccine strains recommended by World Health Organization (WHO). We found that strain B/Guangxi-Jiangzhou/1352/2018 was free of interlineage reassortment and poorly matched with the vaccine strain B/Colorado/06/2017 of the same year. We also determined the median lethal dose (LD50) and the pathogenicity of strain B/Guangxi-Jiangzhou/1352/2018 in mice. The results showed that the LD50 was 105.9 TCID50 (median tissue culture infective dose), the IBV titer in the lungs reached peak 1 d post infection and the mRNA level of the most of inflammatory cytokines in the lungs reached peak 12 h post infection. The alveoli in the lungs were severely damaged and a large number of inflammatory cells were infiltrated post infection. The study demonstrated that the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018) could infect mice and induce typical lung inflammation. This will facilitate the research on the pathogenesis and transmission mechanism of IBV, and provide an ideal animal model for evaluation of new vaccines, antiviral and anti-inflammatory drug.
Amino Acids/genetics*
;
Animals
;
Antiviral Agents/pharmacology*
;
China
;
Cytokines/metabolism*
;
Hemagglutinins/metabolism*
;
Humans
;
Influenza B virus/pathogenicity*
;
Influenza, Human/virology*
;
Mice
;
Neuraminidase/genetics*
;
Orthomyxoviridae Infections/virology*
;
Phylogeny
;
RNA, Messenger/metabolism*
;
Virulence/genetics*
9.Comparative Study of the Genetic Diversity, Antimicrobial Resistance, and Pathogenicity of
Shuang MENG ; Xiao Li DU ; Yong Lu WANG ; Feng Tian QU ; Gui Lin XIE ; Hai Jian ZHOU ; Jin Rui HU ; Zheng QIN ; Yue WANG ; Biao KAN ; Zhi Gang CUI
Biomedical and Environmental Sciences 2021;34(6):454-464
Objective:
This study was performed to compare the genetic diversity, virulence, and antimicrobial resistance of
Methods:
A total of 38 clinical strains and 19 strains from healthy individuals were isolated from the samples collected in Ma'anshan City, Anhui Province. Their taxonomy was investigated using concatenated
Results:
The 57
Conclusions
The taxonomy, virulence properties, and antibiotic resistance of
Aeromonas/pathogenicity*
;
Case-Control Studies
;
Drug Resistance, Bacterial/genetics*
;
Genetic Variation
;
Humans
;
Virulence Factors/genetics*
10.Application of CRISPR in evolution analysis, detecting and typing, virulence and antibiotic resistance regulation in food-borne pathogens.
Zhiye BAI ; Wen WANG ; Xiaofeng JI ; Yingping XIAO ; Shiqin ZHANG ; Zichen WANG ; Hongmei LI ; Qingli DONG
Chinese Journal of Biotechnology 2021;37(7):2414-2424
Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein gene system can limit the horizontal gene transfer, thereby effectively preventing the invasion of foreign gene elements such as bacteriophages. CRISPR arrays of different bacteria are diverse. Based on the differences in the CRISPR system, this review summarizes the application of CRISPR in food-borne pathogen evolution analysis, detection and typing, virulence and antibiotic resistance in recent years. We also address bacterial detection typing method developed based on the characteristics of CRISPR arrays and the association of CRISPR with virulence and drug resistance of food-borne pathogens. The shortcomings of CRISPR in evolution, detection and typing, virulence and resistance applications are analyzed. In addition, we suggest standardizing CRISPR typing methods, improving and expanding the CRISPR database of pathogenic bacteria, and further exploring the co-evolution relationship between phages and bacteria, to provide references for further exploration of CRISPR functions.
Bacteria/genetics*
;
Bacteriophages/genetics*
;
CRISPR-Cas Systems/genetics*
;
Clustered Regularly Interspaced Short Palindromic Repeats/genetics*
;
Drug Resistance, Microbial/genetics*
;
Virulence/genetics*

Result Analysis
Print
Save
E-mail