1.Exploration of clear surgical margin in human papillomavirus positive oropharyngeal cancer treated with transoral robotic surgery.
Hongli GONG ; Chengzhi XU ; Chunping WU ; Pengyu CAO ; Yongzheng CHEN ; Jianfang WU ; Meiqin SHI ; Ming ZHANG ; Liang ZHOU ; Lei TAO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(11):1016-1027
Objective:To analyze the relationship between the optimal surgical margin value and clinical prognosis of transoral robotic surgery(TORS) in treating human papillomavirus(HPV) -positive oropharyngeal squamous cell carcinoma. Methods:A single-center, prospective, observational cohort study was conducted, enrolling patients with early and moderated stage(≤T3 stage) oropharyngeal carcinoma undergoing TORS between July 2020 and April 2024. The proposed optimal surgical margin cutoff value for TORS was set as 2 mm. The primary objectives were to evaluate the optimal clear margin for TORS and its association with overall survival(OS) and progression-free survival(PFS). Logistic regression was used to analyze correlations between surgical margins and clinical variables, while Cox regression models assessed the impact of surgical margins on OS and PFS. Results:A total of 90 patients(60 males, 66.7%) were included, all had squamous cell carcinoma, with a mean age of 58.0±9.0 years(range: 39-84 years) old. The 1, 2 and 3-year OS rates were 92.3%, 89.9% and 85.0%, respectively, while the 1, 2 and 3-year PFS rates were all 90.1%. For surgical margins ≤2 mm, the 1, 2 and 3-year OS rates were 80.8%, 69.3% and 69.3%, respectively, and PFS rates were 77.9% across three time points. For surgical margins>2 mm, the 1, 2 and 3-year OS rates were 96.5%, 96.5% and 90.6%, respectively, with PFS rates of 94.6%. Logistic regression showed no correlation between surgical margins and tumor type, T/N stage, smoking, alcohol use, or gender(P>0.05). Cox analysis identified surgical margins>2 mm as a significant factor improving PFS(HR=0.14, 95%CI 0.02-0.90, P=0.038). Conclusion:This systematic analysis suggests setting a 2 mm and longer as clear surgical margin for TORS. Margins>2 mm are associated with superior postoperative PFS rate and prolonged PFS time in HPV-positive oropharyngeal carcinoma patients.
Adult
;
Aged
;
Aged, 80 and over
;
Female
;
Humans
;
Male
;
Middle Aged
;
Carcinoma, Squamous Cell/virology*
;
Human Papillomavirus Viruses/isolation & purification*
;
Margins of Excision
;
Oropharyngeal Neoplasms/virology*
;
Papillomavirus Infections/virology*
;
Prognosis
;
Prospective Studies
;
Robotic Surgical Procedures/methods*
2.High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome.
Yifei SHEN ; Qinghong QIAN ; Liguo DING ; Wenxin QU ; Tianyu ZHANG ; Mengdi SONG ; Yingjuan HUANG ; Mengting WANG ; Ziye XU ; Jiaye CHEN ; Ling DONG ; Hongyu CHEN ; Enhui SHEN ; Shufa ZHENG ; Yu CHEN ; Jiong LIU ; Longjiang FAN ; Yongcheng WANG
Protein & Cell 2025;16(3):211-226
Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Bacteriophages/physiology*
;
High-Throughput Nucleotide Sequencing
;
Sequence Analysis, RNA/methods*
;
Bacteria/virology*
3.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
4.A fluorescence immunochromatography method for detection of human papillomavirus type 16 E6 and L1 proteins.
Xin'er LIU ; Yinzhen ZHAO ; Nannan NIU ; Lingke LI ; Xueli DU ; Jinxiang GUO ; Yingfu ZHANG ; Jichuang WANG ; Yiqing ZHANG ; Yunlong WANG
Chinese Journal of Biotechnology 2024;40(11):4266-4276
This study aims to establish a time-resolved fluorescence immunochromatography method for simultaneous determination of human papillomavirus (HPV) type 16 E6 and L1 protein concentrations. The amount of lanthanide microsphere-labeled antibodies, the concentration of coated antibodies, and the reaction time were optimized, and then a test strip for the simultaneous determination of the protein concentrations was prepared. The performance of the detection method was evaluated based on the concordance of the results from clinical practice. The optimal conditions were 8 μg and 10 μg of HPV16 L1 and E6-labeled antibodies, respectively, 1.5 mg/mL coated antibodies, and reaction for 10 min. The detection with the established method for L1 and E6 proteins showed the linear ranges of 5-320 ng/mL and 2-64 ng/mL and the lowest limits of detection of 1.78 ng/mL and 1.09 ng/mL, respectively. There was no cross reaction with human immunodeficiency virus (HIV), treponema pallidum (TP), or HPV18 E6 and L1 proteins. The average recovery rate of the established method was between 97% and 107%. The test strip prepared in this study showed the sensitivity, specificity, and diagnostic accuracy of 97.46%, 90.57%, and 95.32%, respectively, in distinguishing patients with cervical cancer and precancerous lesions from healthy subjects, with the area under the curve (AUC) of 0.980 1 and 95% Confidence Interval (CI) of 0.956 5 to 1.000 0. The time-resolved fluorescence immunochromatography combined with the test strips prepared in this study showed high sensitivity, high accuracy, simple operation, and rapid reaction in the quantitation of HPV16 E6 and L1 proteins. It thus can be used as an auxiliary method for the diagnosis and early screening of cervical cancer and precancerous lesions and the assessment of disease course.
Oncogene Proteins, Viral/immunology*
;
Humans
;
Chromatography, Affinity/methods*
;
Female
;
Human papillomavirus 16
;
Repressor Proteins/immunology*
;
Capsid Proteins/immunology*
;
Papillomavirus Infections/diagnosis*
;
Fluorescence
;
Uterine Cervical Neoplasms/virology*
5.Development of a Recombinase-aided Amplification Combined With Lateral Flow Dipstick Assay for the Rapid Detection of the African Swine Fever Virus.
Jiang Shuai LI ; Yan Zhe HAO ; Mei Ling HOU ; Xuan ZHANG ; Xiao Guang ZHANG ; Yu Xi CAO ; Jin Ming LI ; Jing MA ; Zhi Xiang ZHOU
Biomedical and Environmental Sciences 2022;35(2):133-140
OBJECTIVE:
To establish a sensitive, simple and rapid detection method for African swine fever virus (ASFV) B646L gene.
METHODS:
A recombinase-aided amplification-lateral flow dipstick (RAA-LFD) assay was developed in this study. Recombinase-aided amplification (RAA) is used to amplify template DNA, and lateral flow dipstick (LFD) is used to interpret the results after the amplification is completed. The lower limits of detection and specificity of the RAA assay were verified using recombinant plasmid and pathogenic nucleic acid. In addition, 30 clinical samples were tested to evaluate the performance of the RAA assay.
RESULTS:
The RAA-LFD assay was completed within 15 min at 37 °C, including 10 min for nucleic acid amplification and 5 minutes for LFD reading results. The detection limit of this assay was found to be 200 copies per reaction. And there was no cross-reactivity with other swine viruses.
CONCLUSION
A highly sensitive, specific, and simple RAA-LFD method was developed for the rapid detection of the ASFV.
African Swine Fever/virology*
;
African Swine Fever Virus/isolation & purification*
;
Animals
;
Nucleic Acid Amplification Techniques/methods*
;
Recombinases/chemistry*
;
Sensitivity and Specificity
;
Swine
;
Viral Proteins/genetics*
6.A Longitudinal Survey for Genome-based Identification of SARS-CoV-2 in Sewage Water in Selected Lockdown Areas of Lahore City, Pakistan: A Potential Approach for Future Smart Lockdown Strategy.
Yaqub TAHIR ; Nawaz MUHAMMAD ; Z Shabbir MUHAMMAD ; A Ali MUHAMMAD ; Altaf IMRAN ; Raza SOHAIL ; A B Shabbir MUHAMMAD ; A Ashraf MUHAMMAD ; Z Aziz SYED ; Q Cheema SOHAIL ; B Shah MUHAMMAD ; Rafique SAIRA ; Hassan SOHAIL ; Sardar NAGEEN ; Mehmood ADNAN ; W Aziz MUHAMMAD ; Fazal SEHAR ; Hussain NADIR ; T Khan MUHAMMAD ; M Atique MUHAMMAD ; Asif ALI ; Anwar MUHAMMAD ; A Awan NABEEL ; U Younis MUHAMMAD ; A Bhattee MUHAMMAD ; Tahir ZARFISHAN ; Mukhtar NADIA ; Sarwar HUDA ; S Rana MAAZ ; Farooq OMAIR
Biomedical and Environmental Sciences 2021;34(9):729-733
7.High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors.
Yao ZHAO ; Xiaoyu DU ; Yinkai DUAN ; Xiaoyan PAN ; Yifang SUN ; Tian YOU ; Lin HAN ; Zhenming JIN ; Weijuan SHANG ; Jing YU ; Hangtian GUO ; Qianying LIU ; Yan WU ; Chao PENG ; Jun WANG ; Chenghao ZHU ; Xiuna YANG ; Kailin YANG ; Ying LEI ; Luke W GUDDAT ; Wenqing XU ; Gengfu XIAO ; Lei SUN ; Leike ZHANG ; Zihe RAO ; Haitao YANG
Protein & Cell 2021;12(11):877-888
A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M
Antiviral Agents/therapeutic use*
;
Binding Sites
;
COVID-19/virology*
;
Coronavirus Papain-Like Proteases/metabolism*
;
Crystallography, X-Ray
;
Drug Evaluation, Preclinical
;
Drug Repositioning
;
High-Throughput Screening Assays/methods*
;
Humans
;
Imidazoles/therapeutic use*
;
Inhibitory Concentration 50
;
Molecular Dynamics Simulation
;
Mutagenesis, Site-Directed
;
Naphthoquinones/therapeutic use*
;
Protease Inhibitors/therapeutic use*
;
Protein Structure, Tertiary
;
Recombinant Proteins/isolation & purification*
;
SARS-CoV-2/isolation & purification*
8.Effects of Tanreqing Capsule on the negative conversion time of nucleic acid in patients with COVID-19: A retrospective cohort study.
Xing ZHANG ; Yan XUE ; Xuan CHEN ; Jia-Min WU ; Zi-Jian SU ; Meng SUN ; Lu-Jiong LIU ; Yi-Bao ZHANG ; Yi-le ZHANG ; Gui-Hua XU ; Miao-Yan SHI ; Xiu-Ming SONG ; Yun-Fei LU ; Xiao-Rong CHEN ; Wei ZHANG ; Qi CHEN
Journal of Integrative Medicine 2021;19(1):36-41
OBJECTIVE:
Traditional Chinese medicine plays a significant role in the treatment of the pandemic of coronavirus disease 2019 (COVID-19). Tanreqing Capsule (TRQC) was used in the treatment of COVID-19 patients in the Shanghai Public Health Clinical Center. This study aimed to investigate the clinical efficacy of TRQC in the treatment of COVID-19.
METHODS:
A retrospective cohort study was conducted on 82 patients who had laboratory-confirmed mild and moderate COVID-19; patients were treated with TRQC in one designated hospital. The treatment and control groups consisted of 25 and 57 cases, respectively. The treatment group was given TRQC orally three times a day, three pills each time, in addition to conventional Western medicine treatments which were also administered to the control group. The clinical efficacy indicators, such as the negative conversion time of pharyngeal swab nucleic acid, the negative conversion time of fecal nucleic acid, the duration of negative conversion of pharyngeal-fecal nucleic acid, and the improvement in the level of immune indicators such as T-cell subsets (CD3, CD4 and CD45) were monitored.
RESULTS:
COVID-19 patients in the treatment group, compared to the control group, had a shorter negative conversion time of fecal nucleic acid (4 vs. 9 days, P = 0.047) and a shorter interval of negative conversion of pharyngeal-fecal nucleic acid (0 vs. 2 days, P = 0.042). The level of CD3
CONCLUSION
Significant reductions in the negative conversion time of fecal nucleic acid and the duration of negative conversion of pharyngeal-fecal nucleic acid were identified in the treatment group as compared to the control group, illustrating the potential therapeutic benefits of using TRQC as a complement to conventional medicine in patients with mild and moderate COVID-19. The underlying mechanism may be related to the improved levels of the immune indicator CD3
Adult
;
Antiviral Agents/therapeutic use*
;
COVID-19/pathology*
;
Capsules
;
DNA, Viral/analysis*
;
Drugs, Chinese Herbal/therapeutic use*
;
Feces/virology*
;
Female
;
Humans
;
Length of Stay
;
Lymphocyte Count
;
Male
;
Medicine, Chinese Traditional/methods*
;
Middle Aged
;
Retrospective Studies
;
SARS-CoV-2/genetics*
;
Severity of Illness Index
;
Treatment Outcome
;
Young Adult
9.Highly sensitive serological approaches for Pepino mosaic virus detection.
Wan-Qin HE ; Jia-Yu WU ; Yi-Yi REN ; Xue-Ping ZHOU ; Song-Bai ZHANG ; Ya-Juan QIAN ; Fang-Fang LI ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2020;21(10):811-822
Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.
Animals
;
Antibodies, Monoclonal/immunology*
;
China
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Female
;
Hybridomas
;
Solanum lycopersicum/virology*
;
Mice
;
Mice, Inbred BALB C
;
Plant Diseases/virology*
;
Potexvirus/metabolism*
;
Sensitivity and Specificity
;
Nicotiana
10.Analysis of an improved workflow of endoscope reprocessing for bedside endoscopic diagnosis and treatment on COVID-19 patients.
Qing GU ; Hua-Fen WANG ; Ying FANG ; Ye LU ; Zhe SHEN ; Yan WANG ; Xin WU ; Li CEN ; Yi-Shu CHEN
Journal of Zhejiang University. Science. B 2020;21(5):416-422
Severe cases infected with the coronavirus disease 2019 (COVID-19), named by the World Health Organization (WHO) on Feb. 11, 2020, tend to present a hypercatabolic state because of severe systemic consumption, and are susceptible to stress ulcers and even life-threatening gastrointestinal bleeding. Endoscopic diagnosis and treatment constitute an irreplaceable part in the handling of severe COVID-19 cases. Endoscopes, as reusable precision instruments with complicated structures, require more techniques than other medical devices in cleaning, disinfection, sterilization, and other reprocessing procedures. From 2016 to 2019, health care-acquired infection caused by improper endoscope reprocessing has always been among the top 5 on the list of top 10 health technology hazards issued by the Emergency Care Research Institute. Considering the highly infective nature of COVID-19 and the potential aerosol contamination therefrom, it is of pivotal significance to ensure that endoscopes are strictly reprocessed between uses. In accordance with the national standard "Regulation for Cleaning and Disinfection Technique of Flexible Endoscope (WS507-2016)," we improved the workflow of endoscope reprocessing including the selection of chemicals in an effort to ensure quality control throughout the clinical management towards COVID-19 patients. Based on the experience we attained from the 12 severe COVID-19 cases in our hospital who underwent endoscopy 23 times in total, the article provides an improved version of endoscopic reprocessing guidelines for bedside endoscopic diagnosis and treatment on COVID-19 patients for reference.
Adult
;
Aged
;
Aged, 80 and over
;
Betacoronavirus
;
China
;
Coronavirus Infections
;
diagnosis
;
therapy
;
Cross Infection
;
prevention & control
;
Disinfection
;
methods
;
Endoscopes
;
virology
;
Equipment Contamination
;
prevention & control
;
Female
;
Humans
;
Male
;
Middle Aged
;
Pandemics
;
Peracetic Acid
;
Personal Protective Equipment
;
Pneumonia, Viral
;
diagnosis
;
therapy
;
Sterilization
;
methods
;
Workflow

Result Analysis
Print
Save
E-mail