1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.Advances of virus-like particles as mRNA delivery vectors.
Xinyu LIN ; Shuling REN ; Tingdong LI ; Shengxiang GE
Chinese Journal of Biotechnology 2025;41(4):1268-1279
With the continuous development of messenger RNA (mRNA) technology, mRNA-based drugs have shown broad application prospects in recent years. Since mRNA is easy to be degraded and difficult to enter cells directly, the mRNA delivery vectors have always been one of the focuses in the development of mRNA-based drugs. Although lipid nanoparticles (LNPs) have been widely used for the delivery of mRNA, they tend to accumulate in the liver, and repeated administration can easily induce inflammatory response which leads to tissue damage. Compared with LNPs, virus-like particles (VLPs) have the advantages of high biocompatibility and safety, being expected to offer new solutions for mRNA delivery. Based on the practical application requirements, this review summarized the research progress in VLPs according to the mRNA delivery steps: particle assembly, delivery into cells, and intracellular release. We hope to provide a basis and design ideas for the development of new VLPs as delivery vectors, promote the application of VLPs in mRNA delivery, and provide new possibilities for the research and application of mRNA-based therapeutics.
RNA, Messenger/administration & dosage*
;
Humans
;
Nanoparticles/chemistry*
;
Genetic Vectors
;
Lipids/chemistry*
;
Drug Delivery Systems/methods*
;
Virion
;
Animals
;
Gene Transfer Techniques
;
Liposomes
3.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
4.Quantification of viral particles in adenovirus vector-based vaccines by nano-flow cytometry.
Zhuowei SHI ; Ying ZHANG ; Qingya TIAN ; Ziqiang WANG ; Hong SHAO
Chinese Journal of Biotechnology 2025;41(8):3155-3164
This study aims to establish a method for counting the viral particles in adenovirus vector-based vaccines. Nano-flow cytometry was employed to analyze the viral particles in adenovirus-based vector vaccines at the single-particle level. Monodisperse silica nanoparticles with a refractive index close to that of the virus were selected as the particle size standard to calculate the viral particle size, which was then compared with the results obtained from transmission electron microscopy (TEM) to determine the gating strategy. Subsequently, a particle count standard was employed to calculate the viral particle concentration. The established method demonstrated good linearity, accuracy, precision, and specificity. The results of determined viral particle concentration showed a good correlation with the infectious titer. Compared with the conventional OD260 method, nano-flow cytometry can directly measure the viral particle concentration and indicate whether the sample has been disassembled according to changes in viral particle concentration and size, thus more accurately reflecting the actual infectious potency of the sample. The novel quantification method established in this study is capable of indicating the efficacy of adenovirus vector-based vaccines and provides effective technical support for the quality control of such products.
Adenoviridae/genetics*
;
Genetic Vectors
;
Flow Cytometry/methods*
;
Virion/isolation & purification*
;
Particle Size
;
Nanoparticles
;
Viral Vaccines
5.Construction of a stable 4T1 cell line expressing UL19 by the PiggyBac transposon system.
Xiaotong ZHAO ; Xinya WANG ; Binlei LIU ; Han HU ; Yang WANG
Chinese Journal of Biotechnology 2024;40(11):4138-4148
To investigate the mechanism of the major capsid protein VP5 (encoded by the UL19 gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of UL19 in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of UL19 and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with UL19, demonstrating the stable insertion of UL19 into the 4T1 cell genome. The real-time cell analysis (RTCA) was employed to monitor the proliferation of 4T1-iRFP-VP5-GFP cells, which showed similar proliferation activity to their parental 4T1 cells. Further studies confirmed that NK92 cells exhibited stronger cytotoxicity against 4T1-iRFP-VP5-GFP cells than against 4T1 cells. This study layed a foundation for elucidating the role of VP5 protein in regulating immune cells, including T cells and NK cells, via HLA-E in 4T1 cells to exert the anti-tumor function.
Animals
;
Mice
;
DNA Transposable Elements/genetics*
;
Cell Line, Tumor
;
Capsid Proteins/biosynthesis*
;
Transfection
;
Green Fluorescent Proteins/metabolism*
;
Oncolytic Viruses/genetics*
;
Female
;
Simplexvirus/genetics*
6.A fluorescence immunochromatography method for detection of human papillomavirus type 16 E6 and L1 proteins.
Xin'er LIU ; Yinzhen ZHAO ; Nannan NIU ; Lingke LI ; Xueli DU ; Jinxiang GUO ; Yingfu ZHANG ; Jichuang WANG ; Yiqing ZHANG ; Yunlong WANG
Chinese Journal of Biotechnology 2024;40(11):4266-4276
This study aims to establish a time-resolved fluorescence immunochromatography method for simultaneous determination of human papillomavirus (HPV) type 16 E6 and L1 protein concentrations. The amount of lanthanide microsphere-labeled antibodies, the concentration of coated antibodies, and the reaction time were optimized, and then a test strip for the simultaneous determination of the protein concentrations was prepared. The performance of the detection method was evaluated based on the concordance of the results from clinical practice. The optimal conditions were 8 μg and 10 μg of HPV16 L1 and E6-labeled antibodies, respectively, 1.5 mg/mL coated antibodies, and reaction for 10 min. The detection with the established method for L1 and E6 proteins showed the linear ranges of 5-320 ng/mL and 2-64 ng/mL and the lowest limits of detection of 1.78 ng/mL and 1.09 ng/mL, respectively. There was no cross reaction with human immunodeficiency virus (HIV), treponema pallidum (TP), or HPV18 E6 and L1 proteins. The average recovery rate of the established method was between 97% and 107%. The test strip prepared in this study showed the sensitivity, specificity, and diagnostic accuracy of 97.46%, 90.57%, and 95.32%, respectively, in distinguishing patients with cervical cancer and precancerous lesions from healthy subjects, with the area under the curve (AUC) of 0.980 1 and 95% Confidence Interval (CI) of 0.956 5 to 1.000 0. The time-resolved fluorescence immunochromatography combined with the test strips prepared in this study showed high sensitivity, high accuracy, simple operation, and rapid reaction in the quantitation of HPV16 E6 and L1 proteins. It thus can be used as an auxiliary method for the diagnosis and early screening of cervical cancer and precancerous lesions and the assessment of disease course.
Oncogene Proteins, Viral/immunology*
;
Humans
;
Chromatography, Affinity/methods*
;
Female
;
Human papillomavirus 16
;
Repressor Proteins/immunology*
;
Capsid Proteins/immunology*
;
Papillomavirus Infections/diagnosis*
;
Fluorescence
;
Uterine Cervical Neoplasms/virology*
7.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
8.Quantification of complete viral particles in inactivated avian influenza virus antigen by high performance size exclusion chromatography coupled with multi-angle laser light scattering.
Jianmin HAO ; Youyan LIU ; Zhiguo SU ; Songping ZHANG ; Zhengjun LI
Chinese Journal of Biotechnology 2023;39(10):4295-4307
We developed a method for accurate quantification of the intact virus particles in inactivated avian influenza virus feedstocks. To address the problem of impurities interference in the detection of inactivated avian influenza virus feedstocks by direct high performance size exclusion chromatography (HPSEC), we firstly investigated polyethylene glycol (PEG) precipitation and ion exchange chromatography (IEC) for H5N8 antigen purification. Under the optimized conditions, the removal rate of impurity was 86.87% in IEC using DEAE FF, and the viral hemagglutination recovery was 100%. HPSEC was used to analyze the pretreated samples. The peak of 8.5-10.0 min, which was the characteristic adsorption of intact virus, was analyzed by SDS-PAGE and dynamic light scattering. It was almost free of impurities and the particle size was uniform with an average particle size of 127.7 nm. After adding antibody to the IEC pretreated samples for HPSEC detection, the characteristic peak disappeared, indicating that IEC pretreatment effectively removed the impurities. By coupling HPSEC with multi-angle laser scattering technique (MALLS), the amount of intact virus particles in the sample could be accurately quantified with a good linear relationship between the number of virus particles and the chromatographic peak area (R2=0.997). The established IEC pretreatment-HPSEC-MALLS assay was applied to accurate detection of the number of intact virus particles in viral feedstocks of different subtypes (H7N9), different batches and different concentrations, all with good applicability and reproducibility, Relative standard deviation < 5%, n=3.
Animals
;
Reproducibility of Results
;
Influenza A Virus, H7N9 Subtype
;
Influenza in Birds
;
Chromatography, Gel
;
Virion
;
Lasers
9.Construction of foot-and-mouth disease virus like particles-induced expression vectors and screening of BHK-21 cell pools.
Shuzhen TAN ; Hu DONG ; Shiqi SUN ; Huichen GUO
Chinese Journal of Biotechnology 2023;39(12):4849-4860
Transient expression is the major method to express foot-and-mouth disease virus (FMDV) capsid proteins in mammalian cells. To achieve stable expression of FMDV capsid proteins and efficient assembly of virus like particles (VLPs) in cells, the plasmids of piggyBac (PB) transposon-constitutive expression and PB transposon-tetracycline (Tet) inducible expression vectors were constructed. The function of the plasmids was tested by fluorescent proteins. By adding antibiotics, the constitutive cell pools (C-WT, C-L127P) expressing P12A3C (WT/L127P) genes and the inducible cell pools (I-WT, I-L127P) expressing P12A3C (WT/L127P) genes were generated. The genes of green fluorescent protein, 3C protease and reverse tetracycline transactivator (rtTA) were integrated into chromosome, which was confirmed by fluorescence observation and PCR testing. The cell pool I-L127P has a stronger production capacity of capsid proteins and VLPs, which was confirmed by Western blotting and enzyme linked immunosorbent assay (ELISA), respectively. In conclusion, inducing the chromosomal expression of FMDV capsid proteins was firstly reported, which may facilitate the technical process of mammalian production of FMDV VLPs vaccine and the construction of mammalian inducible expression systems for other proteins.
Animals
;
Foot-and-Mouth Disease Virus/genetics*
;
Capsid Proteins
;
Viral Proteins/metabolism*
;
Foot-and-Mouth Disease/prevention & control*
;
Tetracyclines/metabolism*
;
Viral Vaccines
;
Antibodies, Viral
;
Mammals/metabolism*
10.Research progress in vaccines of SARS-CoV-2.
Xinbin GE ; Qigan QU ; Zeguang WANG ; Shungeng ZHANG ; Yan CHI ; Chunhui SHAN ; Ruihan LIU ; Qing ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):946-951
Since the outbreak of corona virus disease 2019 (COVID-19), viral strains have mutated and evolved. Vaccine research is the most direct and effective way to control COVID-19. According to different production mechanisms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines included inactivated virus vaccine, live attenuated vaccine, mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like particle vaccine and protein subunit vaccine. Among them, viral protein subunit vaccine has a wide application prospect due to its high safety and effectiveness. Viral nucleocapsid protein has high immunogenicity and low variability which could be a new direction for vaccine production. We summarized the current development of vaccine research by reviewing the current progress, vaccine safety and vaccine immune efficiency. It is hoped that the proposed possible development strategies could provide a reference for epidemic prevention work in future.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/prevention & control*
;
Protein Subunits
;
Vaccines, DNA
;
Nucleocapsid Proteins

Result Analysis
Print
Save
E-mail