1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Effect of platelet-derived growth factor-BB on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension and its mechanism.
Xin GUO ; Ming-Xia LI ; Caicike BAYER ; Yan-Qing YANG ; Le WANG
Chinese Journal of Contemporary Pediatrics 2023;25(4):407-414
OBJECTIVES:
To study the effect of platelet-derived growth factor-BB (PDGF-BB) on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH).
METHODS:
A total of 128 neonatal rats were randomly divided into four groups: PDGF-BB+HPH, HPH, PDGF-BB+normal oxygen, and normal oxygen (n=32 each). The rats in the PDGF-BB+HPH and PDGF-BB+normal oxygen groups were given an injection of 13 μL 6×1010 PFU/mL adenovirus with PDGF-BB genevia the caudal vein. After 24 hours of adenovirus transfection, the rats in the HPH and PDGF-BB+HPH groups were used to establish a neonatal rat model of HPH. Right ventricular systolic pressure (RVSP) was measured on days 3, 7, 14, and 21 of hypoxia. Hematoxylin-eosin staining was used to observe pulmonary vascular morphological changes under an optical microscope, and vascular remodeling parameters (MA% and MT%) were also measured. Immunohistochemistry was used to measure the expression levels of PDGF-BB and proliferating cell nuclear antigen (PCNA) in lung tissue.
RESULTS:
The rats in the PDGF-BB+HPH and HPH groups had a significantly higher RVSP than those of the same age in the normal oxygen group at each time point (P<0.05). The rats in the PDGF-BB+HPH group showed vascular remodeling on day 3 of hypoxia, while those in the HPH showed vascular remodeling on day 7 of hypoxia. On day 3 of hypoxia, the PDGF-BB+HPH group had significantly higher MA% and MT% than the HPH, PDGF-BB+normal oxygen, and normal oxygen groups (P<0.05). On days 7, 14, and 21 of hypoxia, the PDGF-BB+HPH and HPH groups had significantly higher MA% and MT% than the PDGF-BB+normal oxygen and normal oxygen groups (P<0.05). The PDGF-BB+HPH and HPH groups had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group at all time points (P<0.05). On days 3, 7, and 14 of hypoxia, the PDGF-BB+HPH group had significantly higher expression levels of PDGF-BB and PCNA than the HPH group (P<0.05), while the PDGF-BB+normal oxygen group had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group (P<0.05).
CONCLUSIONS
Exogenous administration of PDGF-BB in neonatal rats with HPH may upregulate the expression of PCNA, promote pulmonary vascular remodeling, and increase pulmonary artery pressure.
Rats
;
Animals
;
Hypertension, Pulmonary
;
Becaplermin
;
Animals, Newborn
;
Proliferating Cell Nuclear Antigen
;
Vascular Remodeling
;
Pulmonary Artery/metabolism*
;
Hypoxia
;
Oxygen
;
Cell Proliferation
;
Myocytes, Smooth Muscle/metabolism*
3.Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Journal of Zhejiang University. Medical sciences 2023;51(6):750-757
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Vascular Remodeling/genetics*
;
Hypoxia/genetics*
;
Myocytes, Smooth Muscle
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Cell Hypoxia/genetics*
4.Globular adiponectin-mediated vascular remodeling by affecting the secretion of adventitial-derived tumor necrosis factor-α induced by urotensin II.
Jun LI ; Limin LUO ; Yonggang ZHANG ; Xiao DONG ; Shuyi DANG ; Xiaogang GUO ; Wenhui DING
Journal of Zhejiang University. Science. B 2022;23(12):1014-1027
OBJECTIVES:
In this study, we explored how adiponectin mediated urotensin II (UII)-induced tumor necrosis factor-α (TNF-α) and α-smooth muscle actin (α-SMA) expression and ensuing intracellular signaling pathways in adventitial fibroblasts (AFs).
METHODS:
Growth-arrested AFs and rat tunica adventitia of vessels were incubated with UII and inhibitors of signal transduction pathways for 1‒24 h. The cells were then harvested for TNF-α receptor (TNF-α-R) messenger RNA (mRNA) and TNF-α protein expression determination by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Adiponectin and adiponectin receptor (adipoR) expression was measured by RT-PCR, quantitative real-time PCR (qPCR), immunohistochemical analysis, and cell counting kit-8 (CCK-8) cell proliferation experiments. We then quantified TNF-α and α-SMA mRNA and protein expression levels by qPCR and immunofluorescence (IF) staining. RNA interference (RNAi) was used to explore the function of the adipoR genes. To investigate the signaling pathway, we applied western blotting (WB) to examine phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). In vivo, an adiponectin (APN)-knockout (APN-KO) mouse model mimicking adventitial inflammation was generated to measure TNF-α and α-SMA expression by application of qPCR and IF, with the goal of gaining a comprehensive atlas of adiponectin in vascular remodeling.
RESULTS:
In both cells and tissues, UII promoted TNF-α protein and TNF-α-R secretion in a dose- and time-dependent manner via Rho/protein kinase C (PKC) pathway. We detected marked expression of adipoR1, T-cadherin, and calreticulin as well as a moderate presence of adipoR2 in AFs, while no adiponectin was observed. Globular adiponectin (gAd) fostered the growth of AFs, and acted in concert with UII to induce α-SMA and TNF-α through the adipoR1/T-cadherin/calreticulin/AMPK pathway. In AFs, gAd and UII synergistically induced AMPK phosphorylation. In the adventitial inflammation model, APN deficiency up-regulated the expression of α-SMA, UII receptor (UT), and UII while inhibiting TNF-α expression.
CONCLUSIONS
From the results of our study, we can speculate that UII induces TNF-α protein and TNF-α-R secretion in AFs and rat tunica adventitia of vessels via the Rho and PKC signal transduction pathways. Thus, it is plausible that adiponectin is a major player in adventitial progression and could serve as a novel therapeutic target for cardiovascular disease administration.
Mice
;
Rats
;
Animals
;
Adventitia/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Calreticulin/metabolism*
;
Vascular Remodeling
;
AMP-Activated Protein Kinases/metabolism*
;
Cells, Cultured
;
RNA, Messenger/genetics*
;
Inflammation
5.Role of myelin and lymphocyte protein in regulating pulmonary artery smooth muscle cell proliferation and apoptosis in pulmonary hypertension.
Jin Jun LIU ; Qing Qing LI ; Chao Chao ZENG ; Yue Xiang WANG ; Qing Tian HU ; Hong Ju WANG ; Shi Li WU
Journal of Southern Medical University 2022;42(10):1572-1577
OBJECTIVE:
To investigate the role of myelin and lymphocyte protein (MAL) in pulmonary hypertension (PAH).
METHODS:
Blood samples were collected from 50 patients with PAH (PAH group) and 50 healthy individuals for detection of plasma MAL expression using ELISA.According to the echocardiographic findings, the patients were divided into moderate/severe group (n=18) and mild group (n=32), and the correlation between MAL protein level and the severity of PAH was analyzed.In a pulmonary artery smooth muscle cell model of PAH with hypoxia-induced abnormal proliferation, the effects of mal gene knockdown and overexpression on cell growth, proliferation and starvation-induced apoptosis were observed; the changes in NK-κB signaling pathway in the transfected cells were detected to explore the molecular mechanism by which MAL regulates PAMSC proliferation and apoptosis.
RESULTS:
The plasma level of MAL was significantly higher in patients with PAH than in healthy individuals (P < 0.05), and the patients with moderate/severe PAH had significantly higher MAL level than those with mild PAH (P < 0.001).In PAMSCs, exposure to hypoxia significantly increased the mRNA and protein expression levels of MAL (P < 0.05), and MAL knockdown obviously inhibited hypoxia-induced proliferation and promoted starvation-induced apoptosis of the PAMSCs (P < 0.05).Knocking down mal significantly inhibited the activation of NK-κB signaling pathway that participated in regulation of PAMSC proliferation (P < 0.05).
CONCLUSION
The plasma level of MAL is elevated in PAH patients in positive correlation with the disease severity.MAL knockdown inhibits abnormal proliferation and promotes apoptosis of PAMSCs by targeted inhibition of the NF-κB signaling pathway to improve vascular remodeling in PAH.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Myelin Sheath/metabolism*
;
Apoptosis
;
Myocytes, Smooth Muscle
;
Vascular Remodeling/genetics*
;
Cell Proliferation
;
Hypoxia/metabolism*
;
Lymphocytes
6.Roles of smooth muscle 22α in vascular homeostasis and vascular remodeling.
Ning ZHANG ; Yong-Qing DOU ; Mei HAN
Acta Physiologica Sinica 2021;73(1):82-88
The research on the molecular mechanism of vascular injury has been a hot topic in recent years since the mechanism can be targeted for the treatment of vascular injury diseases. A large number of studies have found that vascular injury, repair and pathological remodeling are closely related to phenotype switching, abnormal proliferation and migration, and apoptosis of vascular smooth muscle cells (VSMCs). Smooth muscle 22α (SM22α) is a shape change and transformation sensitive F-actin-binding protein. SM22α decorates the contractile filament bundles within cultured VSMCs exhibiting differentiated phenotypes. In addition, SM22α is involved in regulation of cell signaling pathways related to vascular homeostasis and vascular remodeling. Here, we reviewed the recent research progress of SM22α in vascular homeostasis and remodeling.
Cell Proliferation
;
Cells, Cultured
;
Homeostasis
;
Humans
;
Muscle Proteins
;
Muscle, Smooth, Vascular
;
Myocytes, Smooth Muscle
;
Phenotype
;
Vascular Remodeling
7.New insights into vascular mechanobiology: roles of matrix mechanics in regulating smooth muscle cell function.
Jin WANG ; Juan-Juan ZHU ; Jing ZHOU
Acta Physiologica Sinica 2021;73(2):160-174
Vascular smooth muscle cell (vSMC) is the predominant cell type in the blood vessel wall and is constantly subjected to a complex extracellular microenvironment. Mechanical forces that are conveyed by changes in stiffness/elasticity, geometry and topology of the extracellular matrix have been indicated by experimental studies to affect the phenotype and function of vSMCs. vSMCs perceive the mechanical stimuli from matrix via specialized mechanosensors, translate these stimuli into biochemical signals controlling gene expression and activation, with the consequent modulation in controlling various aspects of SMC behaviors. Changes in vSMC behaviors may further cause disruption of vascular homeostasis and then lead to vascular remodeling. A better understanding of how SMC senses and transduces mechanical forces and how the extracellular mechano-microenvironments regulate SMC phenotype and function may contribute to the development of new therapeutics for vascular diseases.
Biophysics
;
Cells, Cultured
;
Extracellular Matrix
;
Humans
;
Muscle, Smooth, Vascular
;
Myocytes, Smooth Muscle
;
Phenotype
;
Vascular Remodeling
8.Effect and mechanism of vascular endothelial growth factor-A on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension.
Jing CAO ; Jia-Yuan LUO ; Dian WU ; Qian ZHAO ; Ming-Xia LI
Chinese Journal of Contemporary Pediatrics 2021;23(1):103-110
OBJECTIVE:
To study the role of vascular endothelial growth factor-A (VEGF-A) in pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH) by regulating survivin (SVV).
METHODS:
A total of 96 neonatal rats were randomly divided into three groups: HPH+VEGF-A group, HPH group, and control group. Each group was further randomly divided into 3-, 7-, 10-, and 14-day subgroups (
RESULTS:
The HPH group had a significantly higher mean RVSP than the control and HPH+VEGF-A groups at each time point (
CONCLUSIONS
Prophylactic intratracheal administration of exogenous VEGF-A in neonatal rats with HPH can inhibit pulmonary vascular remodeling and reduce pulmonary arterial pressure by upregulating the expression of SVV in the early stage of hypoxia. This provides a basis for the interventional treatment of pulmonary vascular remodeling in neonatal HPH.
Animals
;
Animals, Newborn
;
Hypertension, Pulmonary/etiology*
;
Hypoxia
;
Pulmonary Artery
;
Rats
;
Rats, Wistar
;
Vascular Endothelial Growth Factor A
;
Vascular Remodeling
9.Internal relationship between Hippo pathway and pulmonary hypertension
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2021;28(11):1376-1380
Pulmonary hypertension is a kind of progressive pulmonary vascular diseases in which there is excessive vasoconstriction and abnormal pulmonary vascular remodeling, and then a gradual increase in pulmonary arterial pressure, and it eventually leads to right ventricular failure and even death. The pathogenesis of pulmonary hypertension is still uncertain, but some studies suggest that Hippo pathway or some components of the Hippo pathway may be involved in the progress of pulmonary hypertension. In this review, we describe the mechanism of the Hippo pathway or some components of the Hippo pathway in the progress of pulmonary hypertension.
Pulmonary hypertension
;
Hippo pathway
;
pulmonary vascular remodeling
;
review
10.NF-κB inhibitor improves pulmonary vascular remodeling by reversing LPS-induced down-regulation of BMPRII.
Mei-Jun ZHOU ; Yan-Jiang XING ; Jun YANG
Acta Physiologica Sinica 2020;72(5):541-550
The occurrence and development of pulmonary arterial hypertension (PAH) is closely related to the genetic mutation of bone morphogenetic protein receptor type II (BMPRII) encoding gene and the inflammatory response mediated by nuclear factor κB (NF-κB) pathway. This paper was aimed to investigate the effect of NF-κB pathway inhibitors on lipopolysaccharide (LPS)-induced pulmonary artery endothelial cell injury. Human pulmonary artery endothelial cells were treated with 1 μg/mL of LPS. The expression levels of BMPRII and interleukin-8 (IL-8) were detected by Western blot and qPCR. The rat PAH model was established by intraperitoneal (i.p.) injection of monocrotaline (MCT). The expression levels of BMPRII and IL-8 in pulmonary artery endothelial cells were detected by immunofluorescence staining. Cardiac hemodynamic changes and pulmonary vascular remodeling were detected in the MCT-PAH model rats. The results showed that LPS caused down-regulation of BMPRII expression and up-regulation of IL-8 expression in human pulmonary artery endothelial cells. NF-κB inhibitor BAY11-7082 (10 μmol/L) reversed the effect of LPS. In the pulmonary artery endothelial cells of MCT-PAH model, BMPRII expression was down-regulated, IL-8 expression was up-regulated, weight ratio of right ventricle to left ventricle plus septum [RV/(LV+S)] and right ventricular systolic pressure (RVSP) were significantly increased, cardiac output (CO) and tricuspid annular plane systolic excursion (TAPSE) were significantly reduced, and pulmonary vessel wall was significantly thickened. BAY11-7082 (5 mg/kg, i.p., 21 consecutive days) reversed the above changes in the MCT-PAH model rats. These results suggest that LPS down-regulates the expression level of BMPRII through NF-κB signaling pathway, promoting the occurrence and development of PAH. Therefore, the NF-κB pathway can be used as a potential therapeutic target for PAH.
Animals
;
Bone Morphogenetic Protein Receptors, Type II
;
Down-Regulation
;
Endothelial Cells/metabolism*
;
Humans
;
Hypertension, Pulmonary/drug therapy*
;
Lipopolysaccharides
;
NF-kappa B/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Vascular Remodeling

Result Analysis
Print
Save
E-mail