1.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
2.Clinical efficacy of prostatectomy combined with neoadjuvant endocrine therapy.
Hai-Jian YUAN ; Kai-Yun CHU ; Wei-Dong XU
National Journal of Andrology 2025;31(4):323-327
OBJECTIVE:
To investigate the clinical effect of prostatectomy combined with neoadjuvant endocrine therapy.
METHODS:
A total of 147 prostate cancer patients who were treated at the Hai'an People's Hospital from January 2019 to December 2023 were enrolled in the study. The patients were randomly divided into three groups using a random number table, with 49 cases in each group. The patients in control group 1 were treated with radical prostatectomy alone. Endocrine therapy was performed in control group 2. And the patients in observation group received radical prostatectomy combined with neoadjuvant endocrine therapy. Clinical indicators, improvement of prostate symptoms (measured by the IPSS), immune function (CD3+, CD4+, CD4+/CD8+ ratio), serum levels (PSA and vascular endothelial growth factor [VEGF]), and complications were compared among the three groups. A one-year postoperative follow-up was conducted to monitor recurrence.
RESULTS:
After treatment, the patients in observation group had shorter operative time and lymph node dissection time, less intraoperative blood loss, and lower rate of positive surgical margins compared to control group 1. The IPSS score in the observation group was significantly lower than that in control group 1 and control group 2. The levels of CD3+, CD4+, and the CD4+/CD8+ ratio were higher in the observation group compared to the other two groups. The serum levels of PSA and VEGF were lower in the observation group. The incidence of complications in observation group was lower compared to both control groups. And the recurrence rate after one year was lower in the observation group than that in the other two groups. All differences were statistically significant (P<0.05).
CONCLUSION
The clinical indicators, immune function, levels of PSA and VEGF as well as postoperative complications can be improved through radical prostatectomy combined with neoadjuvant endocrine therapy.
Humans
;
Male
;
Prostatectomy
;
Prostatic Neoplasms/drug therapy*
;
Neoadjuvant Therapy
;
Vascular Endothelial Growth Factor A/blood*
;
Middle Aged
;
Prostate-Specific Antigen/blood*
;
Aged
;
Treatment Outcome
3.Left sided sternocleidomastoid interosseous intravascular papillary endothelial hyperplasia: A case report.
Xiaodi XIAO ; Youchen XIA ; Jianying LIU ; Peng FU
Journal of Peking University(Health Sciences) 2025;57(5):1002-1004
Intravascular papillary endothelial hyperplasia (IPEH), also known as Masson tumor, is a rare vascular benign tumor of blood vessels. It may occur in any part of the body, especially the deep dermis and subcutaneous tissue of the head, neck, fingers and trunk. The imaging and histopathology of IPEH are similar to hemangiosarcoma, especially in the case of active vascular endothelial hyperplasia. IPEH is a reactive proliferative lesion of vascular intima. The etiology is still unclear. After some studies showed that IPEH was a benign lesion, few reports on the etiology of it were reported. IPEH is usually limited to the thrombotic vessels or lumens of vascular malformations, usually accompanied by a clear history of trauma. IPEH usually does not cause any symptoms. It looks like a slow-growing lump. Some cases have been reported with pain and swelling. Although IPEH is relatively rare, its accurate diagnosis is crucial because it may be similar to malignant angiogenic lesions in clinical practice. There were few reports of cases related to intravascular papillary endothelial hyperplasia located in the sternocleidomastoid muscle after reviewing the domestic and foreign literature in recent 10 years. This case reports that a young male, who was admitted to the hospital one month after finding a subcutaneous tumor in the left neck. After admittance, relevant preoperative examinations were completed. After multi-disciplinary discussion and elimination of surgical contraindications, a specific surgical plan was formulated. The tumor was removed under local anesthesia on the second day after admission. During the operation, it was found that the tumor was located between the sternocleidomastoid muscle bundles, and it was sent for pathologic examination. Paraffin section pathology was reported after operation. Histological examination showed that the morphology was consistent with vascular endothelial papillary hyperplasia. There were no related surgical complications and recurrence in the 3-month follow-up. The purpose of this paper is to provide clinicians with a certain understanding of this rare disease through the report of this case of IPEH, and to identify it in later clinical work, and at the same time, to avoid confusion with malignant diseases, such as hemangiosarcoma, leading to unnecessary treatment and increase the cost of treatment.
Humans
;
Male
;
Endothelium, Vascular/pathology*
;
Hemangioendothelioma/surgery*
;
Hyperplasia/pathology*
;
Neck Muscles/surgery*
;
Vascular Neoplasms/pathology*
4.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
5.Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy.
Shijin YUAN ; Yan XIA ; Guangwei DAI ; Shun RAO ; Rongrong HU ; Yuzhen GAO ; Qing QIU ; Chenghao WU ; Sai QIAO ; Yinghua XU ; Xinyou XIE ; Haizhou LOU ; Xian WANG ; Jun ZHANG
Journal of Zhejiang University. Science. B 2025;26(4):371-392
Recent data suggest that vascular endothelial growth factor receptor inhibitor (VEGFRi) can enhance the anti-tumor activity of the anti-programmed cell death-1 (anti-PD-1) antibody in colorectal cancer (CRC) with microsatellite stability (MSS). However, the comparison between this combination and standard third-line VEGFRi treatment is not performed, and reliable biomarkers are still lacking. We retrospectively enrolled MSS CRC patients receiving anti-PD-1 antibody plus VEGFRi (combination group, n=54) or VEGFRi alone (VEGFRi group, n=32), and their efficacy and safety were evaluated. We additionally examined the immune characteristics of the MSS CRC tumor microenvironment (TME) through single-cell and spatial transcriptomic data, and an MSS CRC immune cell-related signature (MCICRS) that can be used to predict the clinical outcomes of MSS CRC patients receiving immunotherapy was developed and validated in our in-house cohort. Compared with VEGFRi alone, the combination of anti-PD-1 antibody and VEGFRi exhibited a prolonged survival benefit (median progression-free survival: 4.4 vs. 2.0 months, P=0.0024; median overall survival: 10.2 vs. 5.2 months, P=0.0038) and a similar adverse event incidence. Through single-cell and spatial transcriptomic analysis, we determined ten MSS CRC-enriched immune cell types and their spatial distribution, including naive CD4+ T, regulatory CD4+ T, CD4+ Th17, exhausted CD8+ T, cytotoxic CD8+ T, proliferated CD8+ T, natural killer (NK) cells, plasma, and classical and intermediate monocytes. Based on a systemic meta-analysis and ten machine learning algorithms, we obtained MCICRS, an independent risk factor for the prognosis of MSS CRC patients. Further analyses demonstrated that the low-MCICRS group presented a higher immune cell infiltration and immune-related pathway activation, and hence a significant relation with the superior efficacy of pan-cancer immunotherapy. More importantly, the predictive value of MCICRS in MSS CRC patients receiving immunotherapy was also validated with an in-house cohort. Anti-PD-1 antibody combined with VEGFRi presented an improved clinical benefit in MSS CRC with manageable toxicity. MCICRS could serve as a robust and promising tool to predict clinical outcomes for individual MSS CRC patients receiving immunotherapy.
Humans
;
Colorectal Neoplasms/drug therapy*
;
Male
;
Female
;
Immunotherapy
;
Middle Aged
;
Aged
;
Tumor Microenvironment/immunology*
;
Retrospective Studies
;
Microsatellite Instability
;
Transcriptome
;
Single-Cell Analysis
;
Programmed Cell Death 1 Receptor/immunology*
;
Gene Expression Profiling
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors*
6.Unmet needs of patients with intravascular large B-cell lymphoma: three case reports and a literature review.
Xian LI ; Ru LUO ; Jiaming XU ; Xueli JIN ; Weiqin WANG ; Xibin XIAO ; Wenbin QIAN
Journal of Zhejiang University. Science. B 2025;26(5):493-502
Intravascular large B-cell lymphoma (IVLBCL), a rare subtype of non-Hodgkin lymphoma, is classified as an independent subtype of extranodal diffuse large B-cell lymphoma (DLBCL) in the 2008 World Health Organization (WHO) Classification (Turner et al., 2010). The 5th edition of the World Health Organization (WHO 2022) classification of hematolymphoid tumors retains this subtype (Alaggio et al., 2022). IVLBCL, which is characterized by neoplastic lymphocyte proliferation within the lumen of small blood vessels, tends to invade organs, such as the nervous system, skin, bone marrow (BM), and lung (D'Angelo et al., 2019; Satoh et al., 2019; Vásquez et al., 2019; Fukami et al., 2020).
Humans
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Vascular Neoplasms/therapy*
7.Agrimoniae Herba-Coptidis Rhizoma inhibits angiogenesis in colorectal cancer inflammatory microenvironment based on network pharmacology and experiment validation.
Xin-Ling SHEN ; Hai-Yan PENG ; Huang-Jie FU ; Ya-Ping HE ; Zhi-Yu LI ; Min-Yan HOU ; Shu-Juan ZHANG ; Han XIONG
China Journal of Chinese Materia Medica 2024;49(21):5762-5770
This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled. The effects of different concentrations of the herb pair on the area, number, and length of intersegmental vessels(ISVs) of the zebrafish model were observed. Western blot and real-time quantitative PCR were employed to measure the protein and mRNA levels, respectively, of vascular endothelial growth factor A(VEGFA), vascular epidermal growth factor receptor 2(VEGFR2, also known as kdrl, Flk1), and vascular epidermal growth factor receptor 3(VEGFR3, also known as Flt4). A total of 18 active components and 488 potential targets of Agrimoniae Herba-Coptidis Rhizoma were predicted, and 108 common targets were shared by the herb pair and the disease. According to the results of KEGG pathway enrichment analysis, the angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway were selected for verification. The zebrafish experiment showed that compared with the blank group, the model group showed increased area, number, and length of ISVs in the inflammatory microenvironment. Compared with the model group, the herb pair decreased the area, number, and length of ISVs in a concentration-dependent manner. Compared with the blank group, the model group showed up-regulated protein and mRNA levels of VEGFA, kdrl, and Flt4 in the inflammatory microenvironment. Compared with the model group, the herb pair down-regulated the protein and mRNA levels of VEGFA, kdrl, and Flt4 in a concentration-dependent manner. The results indicated that in the colorectal cancer inflammatory microenvironment, the herb pair Agrimoniae Herba-Coptidis Rhizoma could inhibit angiogenesis via multiple components, targets, and pathways. The anti-angiogenesis effect might be related to the down-regulation of the expression levels of angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway.
Zebrafish
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Network Pharmacology
;
Colorectal Neoplasms/metabolism*
;
Neovascularization, Pathologic/drug therapy*
;
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Microenvironment/drug effects*
;
Angiogenesis Inhibitors/pharmacology*
;
Vascular Endothelial Growth Factor Receptor-2/metabolism*
;
Signal Transduction/drug effects*
;
Coptis chinensis
;
Inflammation/drug therapy*
;
Angiogenesis
8.Mechanism of Zhongfeng Xingnao Decoction in improving microcirculatory disorders in cerebral hemorrhage based on network pharmacology and molecular docking techniques.
Xiao-Qin ZHONG ; Da-Feng HU ; Yu WANG ; Zhen-Qiu NING ; Min-Zhen DENG
China Journal of Chinese Materia Medica 2023;48(22):6115-6127
This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.
Animals
;
Mice
;
Tumor Suppressor Protein p53
;
Proto-Oncogene Proteins c-akt
;
Molecular Docking Simulation
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Microcirculation
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor Necrosis Factor-alpha
;
ErbB Receptors
;
Cerebral Hemorrhage/drug therapy*
;
Neoplasms
;
Phosphatidylinositols
;
Drugs, Chinese Herbal/pharmacology*
9.Advances in mechanism of traditional Chinese medicine in inhibiting angiogenesis in ovarian cancer.
Mao-Yan TANG ; Dan-Ni DING ; Ya-Ya XIE ; Fang SHEN ; Jia LI ; Fang-Yuan LIU ; Feng-Juan HAN
China Journal of Chinese Materia Medica 2023;48(24):6572-6581
Ovarian cancer is one of the three major cancers in gynecology. Ovarian cancer has insidious symptoms in its early stages and mostly has progressed to advanced stages when detected. Surgical treatment combined with chemotherapy is currently the main treatment, but the 5-year survival rate is still less than 45%. Angiogenesis is a key step in the growth and metastasis of ovarian cancer. The inhibition of ovarian cancer angiogenesis has become a new hotspot in anti-tumor targeted therapy, which has many advantages such as less drug resistance, high specificity, few side effects, and broad anti-tumor spectrum. Modern research has confirmed that traditional Chinese medicine(TCM) can inhibit tumor angiogenesis by inhibiting the expression of pro-angiogenic factors, up-regulating the expression of anti-angiogenic factors, inhibiting the proliferation of vascular endothelial cells, reducing the density of tumor microvessels, and regulating related signaling pathways, with unique advantages in the treatment of ovarian cancer. This paper presented a review of the role of TCM in inhibiting ovarian cancer angiogenesis in order to provide references for the optimization of clinical ovarian cancer treatment strategies.
Humans
;
Female
;
Medicine, Chinese Traditional
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Angiogenesis
;
Angiogenesis Inhibitors/therapeutic use*
;
Ovarian Neoplasms/genetics*
;
Neovascularization, Pathologic/genetics*

Result Analysis
Print
Save
E-mail