1.Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing.
Li Xiang SUN ; Shuai WU ; Xiao Wei ZHANG ; Wen Jie LIU ; Ling Juan ZHANG
Chinese Journal of Burns 2022;38(7):629-639
Objective: To explore the heterogeneity and growth factor regulatory network of dermal fibroblasts (dFbs) in mouse full-thickness skin defect wounds based on single-cell RNA sequencing. Methods: The experimental research methods were adopted. The normal skin tissue from 5 healthy 8-week-old male C57BL/6 mice (the same mouse age, sex, and strain below) was harvested, and the wound tissue of another 5 mice with full-thickness skin defect on the back was harvested on post injury day (PID) 7. The cell suspension was obtained by digesting the tissue with collagenase D and DNase Ⅰ, sequencing library was constructed using 10x Genomics platform, and single-cell RNA sequencing was performed by Illumina Novaseq6000 sequencer. The gene expression matrices of cells in the two kinds of tissue were obtained by analysis of Seurat 3.0 program of software R4.1.1, and two-dimensional tSNE plots classified by cell group, cell source, and gene labeling of major cells in skin were used for visual display. According to the existing literature and the CellMarker database searching, the expression of marker genes in the gene expression matrices of cells in the two kinds of tissue was analyzed, and each cell group was numbered and defined. The gene expression matrices and cell clustering information were introduced into CellChat 1.1.3 program of software R4.1.1 to analyze the intercellular communication in the two kinds of tissue and the intercellular communication involving vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) signal pathways in the wound tissue, the relative contribution of each pair of FGF subtypes and FGF receptor (FGFR) subtypes (hereinafter referred to as FGF ligand receptor pairs) to FGF signal network in the two kinds of tissue, and the intercellular communication in the signal pathway of FGF ligand receptor pairs with the top 2 relative contributions in the two kinds of tissue. The normal skin tissue from one healthy mouse was harvested, and the wound tissue of one mouse with full-thickness skin defect on the back was harvested on PID 7. The multiple immunofluorescence staining was performed to detect the expression and distribution of FGF7 protein and its co-localized expression with dipeptidyl peptidase 4 (DPP4), stem cell antigen 1 (SCA1), smooth muscle actin (SMA), and PDGF receptor α (PDGFRα) protein. Results: Both the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7 contained 25 cell groups, but the numbers of cells in each cell group between the two kinds of tissue were different. Genes PDGFRα, platelet endothelial cell adhesion molecule 1, lymphatic endothelial hyaluronic acid receptor 1, receptor protein tyrosine phosphatase C, keratin 10, and keratin 79 all had distinct distributions on two-dimensional tSNE plots, indicating specific cell groups respectively. The 25 cell groups were numbered by C0-C24 and divided into 9 dFb subgroups and 16 non-dFb groups. dFb subgroups included C0 as interstitial progenitor cells, C5 as adipose precursor cells, and C13 as contractile muscle cells related fibroblasts, etc. Non-dFb group included C3 as neutrophils, C8 as T cells, and C18 as erythrocytes, etc. Compared with that of the normal skin tissue of healthy mice, the intercellular communication in the wound tissue of full-thickness skin defected mice on PID 7 was more and denser, and the top 3 cell groups in intercellular communication intensity were dFb subgroups C0, C1, and C2, of which all communicated with other cell groups in the wound tissue. In the wound tissue of full-thickness skin defected mice on PID 7, VEGF signals were mainly sent by the dFb subgroup C0 and received by vascular related cell groups C19 and C21, PDGF signals were mainly sent by peripheral cells C14 and received by multiple dFb subgroups, EGF signals were mainly sent by keratinocyte subgroups C9 and C11 and received by the dFb subgroup C0, and the main sender and receiver of FGF signals were the dFb subgroup C6. In the relative contribution rank of FGF ligand receptor pairs to FGF signal network in the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7, FGF7-FGFR1 was the top 1, and FGF7-FGFR2 or FGF10-FGFR1 was in the second place, respectively; compared with those in the normal skin tissue, there was more intercellular communication in FGF7-FGFR1 signal pathway, while the intercellular communication in FGF7-FGFR2 and FGF10-FGFR1 signal pathways decreased slightly or did not change significantly in the wound tissue; the intercellular communication in FGF7-FGFR1 signal pathway in the wound tissue was stronger than that in FGF7-FGFR2 or FGF10-FGFR1 signal pathway; in the two kinds of tissue, FGF7 signal was mainly sent by dFb subgroups C0, C1, and C2, and received by dFb subgroups C6 and C7. Compared with that in the normal skin tissue of healthy mouse, the expression of FGF7 protein was higher in the wound tissue of full-thickness skin defected mouse on PID 7; in the normal skin tissue, FGF7 protein was mainly expressed in the skin interstitium and also expressed in the white adipose tissue near the dermis layer; in the two kinds of tissue, FGF7 protein was co-localized with DPP4 and SCA1 proteins and expressed in the skin interstitium, co-localized with PDGFRα protein and expressed in dFbs, but was not co-localized with SMA protein, with more co-localized expression of FGF7 in the wound tissue than that in the normal skin tissue. Conclusions: In the process of wound healing of mouse full-thickness skin defect wound, dFbs are highly heterogeneous, act as potential major secretory or receiving cell populations of a variety of growth factors, and have a close and complex relationship with the growth factor signal pathways. FGF7-FGFR1 signal pathway is the main FGF signal pathway in the process of wound healing, which targets and regulates multiple dFb subgroups.
Animals
;
Dipeptidyl Peptidase 4
;
Epidermal Growth Factor
;
Fibroblasts
;
Imidazoles
;
Ligands
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Receptor, Platelet-Derived Growth Factor alpha
;
Sequence Analysis, RNA
;
Skin Abnormalities
;
Soft Tissue Injuries
;
Spinocerebellar Ataxias
;
Sulfonamides
;
Thiophenes
;
Vascular Endothelial Growth Factor A
2.Research Progress of Targeted Ultrasound Contrast Agent BR55.
Xin-Yue ZHANG ; Ke LÜ ; Jian-Chu LI ; Yu-Xin JIANG ; Meng-Su XIAO
Acta Academiae Medicinae Sinicae 2022;44(1):118-122
BR55 is an ultrasound contrast agent targeting vascular endothelial growth factor receptor 2,which can be used to detect tumor neovascularization and improve the diagnostic accuracy.Overseas researchers have used BR55 for human ultrasound molecular imaging,which showed good safety and tolerance.We reviewed the research progress on BR55 applied in the evaluation of tumor neovascularization from the composition,characteristics,animal experiments,and clinical studies of BR55.
Animals
;
Contrast Media
;
Humans
;
Microbubbles
;
Molecular Imaging/methods*
;
Neovascularization, Pathologic/diagnostic imaging*
;
Ultrasonography/methods*
;
Vascular Endothelial Growth Factor Receptor-2/analysis*
3.Changes of lymphatic vessel density in lung adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma and the regulatory factors.
Ping HE ; Xia GU ; Xin ZENG ; Yongmei ZHENG ; Xiaodong LIN
Journal of Southern Medical University 2018;38(11):1349-1353
OBJECTIVE:
To analyze the changes in tumor lymphatic vessel density (LVD) in patients with lung adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) and explore the regulatory factors of LVD.
METHODS:
Complete clinicopathological data were collected form a total of 301 patients with lung adenocarcinoma, including 28 (9.3%) with AIS, 86 (28.6%) with MIA, and 187 (62.1%) with IA. The LVD of all the adenocarcinomas were calculated after D2-40 immunohistochemical staining, and MT1-MMP and VEGF-C expression levels were also evaluated. The differences in LVD among the groups and the correlations of tumor LVD with the expressions of MT1-MMP and VEGF-C and the clinicopathological factors were analyzed.
RESULTS:
The LVD differed significantly among AIS, MIA, and IA groups (= 0.000). The LVDs was significantly correlated with the level of VEGF-C protein expression (=0.917, =0.009), tumor size (= 0.686, =0.017), lymph node metastasis (=0.739, =0.000), and clinical stage (=0.874, =0.012) of the patients.
CONCLUSIONS
Tumor lymphangiogenesis plays an important role in lung adenocarcinoma progression, and VEGF-C may promote this process.
Adenocarcinoma
;
chemistry
;
pathology
;
Adenocarcinoma of Lung
;
chemistry
;
pathology
;
Humans
;
Immunohistochemistry
;
Lymphangiogenesis
;
Lymphatic Vessels
;
chemistry
;
pathology
;
Neoplasm Staging
;
Prognosis
;
Tumor Burden
;
Vascular Endothelial Growth Factor C
;
analysis
4.Effects of bone marrow mesenchymal stem cell transplantation on retinal neovascularization in neonatal rats with oxygen-induced retinopathy.
Qing-Jie MU ; Yue-Hua ZHAO ; Dan-Dan CHENG ; Hai-Yu WANG ; Lan-Fen CHEN ; Yan-Song ZHAO ; Xiao-Li WANG
Chinese Journal of Contemporary Pediatrics 2017;19(11):1202-1207
OBJECTIVETo explore the effects of rat bone mesenchymal stem cell (BMSC) transplantation on retinal neovascularization, and to observe the changes of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factors (VEGF) in rats with oxygen-induced retinopathy (OIR).
METHODSSeventy-two seven-day-old Sprague-Dawley rats were randomly divided into three groups: normal control (CON), model (OIR) and BMSC transplantation. In the BMSC transplantation group, BMSCs were transplanted 5 days after oxygen conditioning. The phosphate buffered saline of the same volume was injected in the CON and OIR groups. The OIR model was prerpared according to the classic hyperoxygen method. At seven days after transplantation, retinal neovascularization was examined by retinal flat-mount staining and hematoxylin eosin (HE) staining. The expression of HIF-1α and VEGF proteins was examined by immunohistochemistry staining and Western blot analysis.
RESULTSThe retinal flat-mount staining results showed that the vessels were well organized in the CON group, but the vessels were irregularly organized, and lots of nonperfusion areas were observed in the OIR group. The large vessels were a bit circuitous, the retinal vessels were relatively organized, and less nonperfusion areas were noted in the BMSC transplantation group. The HE staining results showed that many neovessels and preretinal neovascular (pre-RNC) cells were observed on the internal limiting membrane in the OIR group. There were less pre-RNC cells in the BMSC transplantation group compared with the OIR group (P<0.01). The immunohistochemistry analysis showed that more HIF-1αand VEGFcells were observed in the OIR group compared with the CON group, and less HIF-1αand VEGFcells were observed in the BMSC transplantation group compared with OIR group (P<0.05). The Western blot analysis showed the expression of HIF-1α and VEGF proteins in the OIR group was significantly higher than that in the CON group. The expression of HIF-1α and VEGF proteins in the BMSC transplantation group was lower than that in the OIR group (P<0.01).
CONCLUSIONSBMSC transplantation therapy could alleviate retinal neovascularization in OIR rats, and its mechanisms might be associated with the inhibition of the expression of HIF-1α and VEGF proteins.
Animals ; Animals, Newborn ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; Male ; Mesenchymal Stem Cell Transplantation ; Rats ; Rats, Sprague-Dawley ; Retina ; chemistry ; Retinal Neovascularization ; prevention & control ; Retinopathy of Prematurity ; metabolism ; therapy ; Vascular Endothelial Growth Factor A ; analysis
5.Long Non-coding RNA HOXA11 Antisense Promotes Cell Proliferation and Invasion and Predicts Patient Prognosis in Serous Ovarian Cancer.
Ga Won YIM ; Hee Jung KIM ; Lee Kyung KIM ; Sang Wun KIM ; Sunghoon KIM ; Eun Ji NAM ; Young Tae KIM
Cancer Research and Treatment 2017;49(3):656-668
PURPOSE: The biological function of long non-coding RNAs (lncRNAs) is only partially understood; therefore, in this study, we investigated the expression of the novel HOXA11 antisense (HOXA11as) lncRNA and its oncogenic role in serous ovarian cancer (SOC). MATERIALS AND METHODS: HOXA11as expression was examined in 129 SOC tissue samples by real time reverse transcription polymerase chain reaction. Clinicopathological factors and patient survival were compared between the high (n=27) and low HOXA11as expression group (n=102). To investigate the role of HOXA11as in cell proliferation, invasion, and migration, HOXA11as expression in ovarian cancer cells was knocked down using RNA interference. RESULTS: HOXA11as expression in cancer tissue was 77-fold higher than that of noncancerous tissue (p < 0.05). Higher HOXA11as expression was significantly correlated with histological grade (p=0.017) and preoperative cancer antigen 125 (p=0.048). HOXA11as overexpression in SOC cells led to increased cell proliferation, invasion, and migration. Moreover, HOXA11as was associated with the expression of genes involved in cell invasion, migration, and epithelial-mesenchymal transition (EMT), including vascular endothelial growth factor, matrix metalloproteinase 9 (MMP-9), B-catenin, E-cadherin, Snail, Twist, and vimentin. Multivariate analysis revealed that HOXA11as was a prognostic factor of progressive disease and mortality (hazard ratio [HR], 1.730; p=0.043 and HR, 2.170; p=0.033, respectively). Progression-free and overall survival were significantly shorter in patients with high HOXA11as expression. CONCLUSION: These findings highlight the clinical significance of HOXA11as to predicting the prognosis of SOC patients and suggest its potential in promoting tumor aggressiveness via regulation of vascular endothelial growth factor (VEGF), MMP-9, and EMT-related mechanisms.
Cadherins
;
Cell Proliferation*
;
Epithelial-Mesenchymal Transition
;
Humans
;
Matrix Metalloproteinase 9
;
Mortality
;
Multivariate Analysis
;
Ovarian Neoplasms*
;
Polymerase Chain Reaction
;
Prognosis*
;
Reverse Transcription
;
RNA Interference
;
RNA, Long Noncoding*
;
Snails
;
Vascular Endothelial Growth Factor A
;
Vimentin
6.Expression and significance of mTOR/4EBP1/HIF-1α/VEGF signaling pathway in lung tissues of asthmatic mice.
Li WANG ; Yan-Li ZHANG ; Xiu-Fang WANG ; Zhe SONG ; Wei WANG
Chinese Journal of Contemporary Pediatrics 2017;19(1):104-110
OBJECTIVETo study the expression and significance of the mammalian target of rapamycin (mTOR)/eukaryote initiating factor 4E binding protein 1(4EBP1)/hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway in asthmatic mice.
METHODSForty SPF level 6-8 week-old female Balb/C mice were randomly divided into control, asthma, budesonide and mTOR inhibitor (rapamycin) intervention groups (n=10 each). The asthmatic mouse model was prepared via OVA induction and challenge test. The intervention groups were administered with rapamycin at the dosage of 3 mg/kg by an intraperitoneal injection or budesonide suspension at the dosage of l mg by aerosol inhalation respectively 30 minutes before the OVA challenge. The control and asthma groups were treated with normal saline instead. The concentrations of HIF-1α and VEGF in bronchoalveolar lavage fluid (BALF) were examined using ELISA 24 hours after the last challenge. The pathological changes of lung tissue were observed by hematoxylin-eosin (HE) staining. The p-mTOR and p-4EBP1 from the lung tissues were detected by immunohistochemistry and Western blot. Pearson analysis was used to study the correlation between p-mTOR, p-4EBP1, HIF-1α, and VEGF expression.
RESULTSCompared with the control group, inflammatory cell infiltration and secretions in the trachea increased in the asthma group. The levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues also increased (P<0.01). Compared with the asthma group, inflammatory cell infiltration and secretions in the trachea were reduced in the two intervention groups, and the levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues were also reduced (P<0.01). There were no significant differences in the above changes between the two intervention groups and control group (P>0.05). In the asthma group, there was a pairwise positive correlation between lung p-mTOR and p-4EBP1 expression and HIF-1α and VEGF levels in BALF (P<0.05). However, there were no correlations in the above indexes in the intervention groups and control group.
CONCLUSIONSp-mTOR, p-4EBP1, HIF-1α and VEGF together are involved in the pathogenesis of asthma. Rapamycin treatment can block this signaling pathway, suggesting that this pathway can be used as a novel target for asthma treatment.
Animals ; Asthma ; drug therapy ; metabolism ; Carrier Proteins ; analysis ; physiology ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; physiology ; Lung ; chemistry ; pathology ; Mice ; Mice, Inbred BALB C ; Phosphoproteins ; analysis ; physiology ; Signal Transduction ; physiology ; TOR Serine-Threonine Kinases ; analysis ; physiology ; Vascular Endothelial Growth Factor A ; analysis ; physiology
7.Heparin-derived oligosaccharide inhibits vascular intimal hyperplasia in balloon-injured carotid artery.
Jie-Ru LIU ; Jie WU ; Xin-Chao YU ; Xuan QIAN ; Rui XIONG ; Hui-Fang WANG ; Dan-Feng YU ; Fei-Fei LIU ; Shu-Ying HE
Chinese Journal of Natural Medicines (English Ed.) 2017;15(6):442-450
The aims of the present study were to determine the effects of heparin-derived oligosaccharides (HDOs) on vascular intimal hyperplasia (IH) in balloon-injured carotid artery and to elucidate the underlying mechanisms of action. An animal model was established by rubbing the endothelia within the common carotid artery (CCA) in male rabbits. The rabbits were fed a high-cholesterol diet. Arterial IH was determined by histopathological changes to the CCA. Serum lipids were detected using an automated biochemical analysis. Expressions of mRNAs for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), scavenger receptor class B type I (SR-BI), and ATP-binding cassette transporter A1 (ABCA-1) were analyzed using reverse transcription polymerase chain reaction assays. Expressions of VEGF, VCAM-1, MCP-1, SR-BI and ABCA-1 proteins were analyzed by Western blotting. Enzyme-linked immunosorbent assays were used to quantify expression levels of VEGF and bFGF. Our results showed that administration of HDO significantly inhibited CCA histopathology and restenosis induced by balloon injury. The treatment with HDOs significantly decreased the mRNA and protein expression levels of VEGF, bFGF, VCAM-1, MCP-1, and SR-BI in the arterial wall; however, ABCA-1 expression level was elevated. HDO treatment led to a reduction in serum lipids (total cholesterol, triglycerides, high-density and low-density lipoproteins). Our results from the rabbit model indicated that HDOs could ameliorate IH and underlying mechanism might involve VEGF, bFGF, VCAM-1, MCP-1, SR-BI, and ABCA-1.
ATP Binding Cassette Transporter 1
;
analysis
;
Animals
;
Carotid Artery Injuries
;
drug therapy
;
pathology
;
Chemokine CCL2
;
analysis
;
Heparin
;
therapeutic use
;
Hyperplasia
;
Male
;
Oligosaccharides
;
therapeutic use
;
Rabbits
;
Tunica Intima
;
pathology
;
Vascular Cell Adhesion Molecule-1
;
analysis
;
Vascular Endothelial Growth Factor A
;
analysis
8.Correlation of semen parameters with inflammatory factors in the seminal plasma of obese males.
Rui-Yu HAN ; Jing MA ; Jiao-Ying MA ; Xu-Chu WANG ; Xin-Tao AN ; Zi-Dong ZHANG ; Shu-Song WANG
National Journal of Andrology 2017;23(10):894-898
Objective:
To investigate the influence of inflammatory factors on semen parameters in the seminal plasma of obese men.
METHODS:
Based on the body mass index (BMI), 171 males were divided into a normal group (BMI < 24 kg/m2, n = 59), an overweight group (24 ≤ BMI < 28 kg/m2, n = 54), and an obesity group (BMI =≥ 28 kg/m2, n = 58). The routine semen parameters of the subjects were obtained by computer-assisted semen analysis, the levels of TNF-α, IL-6 and VEGF in the seminal plasma were measured by ELISA, and the correlation of BMI with the above indexes was analyzed.
RESULTS:
Sperm concentration was significantly decreased in the obesity group in comparison with the normal and overweight groups ([40.19 ± 24.05] vs [66.54 ± 34.81] and [57.73 ± 24.61] ×10⁶/ml, P <0.01), and so was the total number of sperm ([110.22 ± 75.44] vs [200.75 ± 102.66] and [157.46 ± 112.89] ×106, P <0.01) and the percentage of progressively motile sperm (PMS) ([30.80 ± 15.56] vs [50.75 ± 10.17] and [39.71 ± 9.73]%, P <0.01). The levels of TNF-α and IL-6 in the seminal plasma were markedly elevated in the obesity group as compared with the normal and overweight groups ([76.90 ± 14.64] vs [64.47 ± 11.92] and [69.74 ± 12.32] pg/ml, P <0.05; [54.17 ± 17.81] vs [39.26 ± 9.09] and [46.25 ± 13.66] pg/ml, P <0.01), while that of VEGF remarkably reduced in the former group in comparison with the latter two ([154.24 ± 30.23] vs [199.23 ± 36.28] and [181.57 ± 34.41] pg/ml, P <0.01). The levels of TNF-α, IL-6, and VEGF were significantly correlated with BMI (r = 0.254, 0.321 and -0.407, P <0.01), those of TNF-α and IL-6 negatively with the percentage of PMS (r =-0.163, P <0.05; r = -0.333, P <0.01). There was a positive correlation between TNF-α and IL-6 (r = 0.468, P <0.01), a negative correlation between IL-6 and VEGF (r = 0.177, P <0.05), but no correlation between TNF-α and VEGF (r = 0.058, P >0.05).
CONCLUSIONS
The levels of TNF-α and IL-6 are increased and that of VEGF decreased in the seminal plasma of obese males, which may affect the semen quality.
Body Mass Index
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Interleukin-6
;
analysis
;
Male
;
Obesity
;
Overweight
;
Semen
;
chemistry
;
Semen Analysis
;
methods
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
;
Tumor Necrosis Factor-alpha
;
analysis
;
Vascular Endothelial Growth Factor A
;
analysis
9.Role of STAT3 signaling pathway in hypoxic-ischemic brain damage of neonatal rats.
Rui DENG ; Feng-Yan ZHAO ; Li ZHANG ; De-Yuan LI ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2016;18(1):78-84
OBJECTIVETo study the role and mechanisms of STAT3 signaling pathway in hypoxic-ischemic brain damage (HIBD) of neonatal rats.
METHODSEighty 7-day-old Sprague-Dawley rats were randomly divided into two groups: HI and sham-operated (n=40 each). The rats in the HI group were subjected to right carotid artery ligation and subsequent hypoxia exposure (8% O2) for 2.5 hours, and the rats in the sham-operated group underwent the right carotid artery dissection without subsequent ligation or hypoxia treatment. Brain tissue samples were collected at 4, 6, 8, 12 and 24 hours after operation and hypoxic exposure. Immunohistochemistry and Western blot were used to detect the expression of STAT3, phosphorylated STAT3 (p-STAT3) and vascular endothelial growth factor (VEGF) proteins. TUNEL staining was used to detect apoptotic cells.
RESULTSNo significant difference in STAT3 expression was observed at all time points between the HI and sham-operated groups (P>0.05). Compared with the sham-operated group, the expression of p-STAT3 protein in the HI group was significantly upregulated at 4, 6, 8, 12 hours after operation and hypoxic exposure, and peaked at 6 hours (P<0.01). The VEGF expression in the HI group was higher than that in the sham-operated group at all time points, which peaked at 8 hours (P<0.05). TUNEL staining showed that the apoptotic cells increased significantly in a time-dependent manner compared with the sham-operated group (P<0.01).
CONCLUSIONSHI may lead to phosphorylation of STAT3 which probably induces the VEGF expression in the brain of neonatal rats. The activated STAT3 signaling pathway may be involved in the apoptosis regulation of nerve cells, and related to apoptosis inhibition of nerve cells.
Animals ; Animals, Newborn ; Female ; Hypoxia-Ischemia, Brain ; metabolism ; Male ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; STAT3 Transcription Factor ; physiology ; Signal Transduction ; physiology ; Vascular Endothelial Growth Factor A ; analysis
10.Clinicopathological and prognostic significance of hypoxia-inducible factor-1 alpha in lung cancer: a systematic review with meta-analysis.
Sheng-Li YANG ; Quan-Guang REN ; Lu WEN ; Jian-Li HU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):321-327
Hypoxia-inducible factor-1 alpha (HIF-1α) plays a vital role in the initiation, evaluation and prognosis in lung cancer. The prognostic value of HIF-1α reported in diverse study remains disputable. Accordingly, a meta-analysis was implemented to further understand the prognostic role of HIF-1α in lung cancer. The relationship between HIF-1α and the clinicopathological characteristics and prognosis of lung cancer were investigated by a meta-analysis. PubMed and Embase were searched from their inception to January 2015 for observational studies. Fixed-effects or random-effects meta-analyses were used to calculate odds ratios and 95% confidence intervals of different comparisons. A total of 20 studies met the criteria. The results showed that HIF-1α expression in lung cancer tissues was significantly higher than that in normal lung tissues. Expression of HIF-1α in patients with squamous cell carcinoma was significantly higher than that of patients with adenocarcinomas. Similarly, non-small cell lung cancer (NSCLC) patients had higher HIF-1α expression than small cell lung cancer (SCLC) patients. Moreover, lymph node metastasized tissues had higher HIF-1α expression than non-lymph node metastasized tissues. A high level HIF-1α expression was well correlated with the expression of vascular endothelial growth factor and epidermal growth factor receptor in the NSCLC. Notably, NSCLC or SCLC patients with positive HIF-1α expression in tumor tissues had lower overall survival rate than patients with negative HIF-1α expression. It was suggested that HIF-1α expression may be a prognostic biomarker and a potential therapeutic target for lung cancer.
Adenocarcinoma
;
diagnosis
;
genetics
;
mortality
;
pathology
;
Biomarkers, Tumor
;
genetics
;
metabolism
;
Carcinoma, Non-Small-Cell Lung
;
diagnosis
;
genetics
;
mortality
;
pathology
;
Carcinoma, Squamous Cell
;
diagnosis
;
genetics
;
mortality
;
pathology
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Lung Neoplasms
;
diagnosis
;
genetics
;
mortality
;
pathology
;
Lymphatic Metastasis
;
Neoplasm Grading
;
Neoplasm Staging
;
Odds Ratio
;
Prognosis
;
Receptor, Epidermal Growth Factor
;
genetics
;
metabolism
;
Survival Analysis
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail