1.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
2.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
3.Investigation on the Role of Medical Recombinant Human-Derived Collagen Functional Dressings in Wound Healing.
Xiaoxiao GAI ; Xiaoxia SUN ; Wenqian MA ; Zhenhua LIN ; Xinyuan LI ; Chenghu LIU
Chinese Journal of Medical Instrumentation 2025;49(4):415-422
OBJECTIVE:
To investigate the biological effect of medical recombinant human-derived collagen functional dressings in wound healing.
METHODS:
MTT assay and RTCA assay were used to detect cell toxicity and proliferation. Scratch assay and Transwell cell migration assay were used to detect cell motility and migration ability. Enzyme-linked immunosorbent assay was used to detect the contents of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-endothelial cell adhesion molecule (CD31) in the supernatant of four types of cells. After animal surgery, the surgical wound was taken at 1 week, 4 weeks and 13 weeks, respectively, for hematoxylin eosin (HE) staining and immunohistochemistry to observe the inflammatory response and CD31 expression of the wound.
RESULTS:
Medical recombinant human-derived collagen functional dressing promotes cell proliferation and migration, enhances wound angiogenesis by upregulating the expression of VEGF, FGF, and CD31 in human dermal vascular endothelial cells (HDVEC) and human vascular endothelial cells (HVEC), thereby improving local blood supply to the wound, regulating the inflammatory response of the wound, and accelerating wound healing.
CONCLUSION
Recombinant type Ⅲ humanized collagen plays an important role in wound healing.
Humans
;
Wound Healing/drug effects*
;
Recombinant Proteins/pharmacology*
;
Animals
;
Cell Proliferation
;
Cell Movement
;
Collagen/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Bandages
;
Platelet Endothelial Cell Adhesion Molecule-1/metabolism*
;
Endothelial Cells
;
Fibroblast Growth Factors/metabolism*
4.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
5.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
6.Effect of Isodon ternifolius-medicated serum on hepatic stellate cells based on TLR4/NF-κB/NLRP3 signaling pathway.
Gui-Dong HUANG ; Zhi-Pin ZHOU ; Zhi PANG ; Le QIN ; Rui-Sheng WU ; Yong CHEN ; Xiao-Xue YE
China Journal of Chinese Materia Medica 2023;48(14):3913-3921
The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.
NF-kappa B/metabolism*
;
Hepatic Stellate Cells
;
Transforming Growth Factor beta1/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Intercellular Adhesion Molecule-1/metabolism*
;
Isodon
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Signal Transduction
;
Colchicine/pharmacology*
;
Caspases
7.Antiplatelet and myocardial protective effect of Shexiang Tongxin Dropping Pill in patients undergoing percutaneous coronary intervention: A randomized controlled trial.
Yan-Jun LIN ; Kun-Li JIAO ; Bo LIU ; Lu FANG ; Shu MENG
Journal of Integrative Medicine 2022;20(2):126-134
BACKGROUND:
High on-clopidogrel platelet reactivity could be partially explained by loss-of-function alleles of CYP2C19, the enzyme that converts clopidogrel into its active form. Shexiang Tongxin Dropping Pill (STDP) is a traditional Chinese medicine to treat angina pectoris. STDP has been shown to improve blood flow in patients with slow coronary flow and attenuate atherosclerosis in apolipoprotein E-deficient mice. However, whether STDP can affect platelet function remains unknown.
OBJECTIVE:
The purpose of this study is to examine the potential effects of STDP on platelet function in patients undergoing percutaneous coronary intervention (PCI) for unstable angina. The interaction between the effects of STDP with polymorphisms of CYP2C19 was also investigated.
DESIGN, PARTICIPANTS AND INTERVENTION:
This was a single-center, randomized controlled trial in patients undergoing elective PCI for unstable angina. Eligible subjects were randomized to receive STDP (210 mg per day) plus dual antiplatelet therapy (DAPT) with clopidogrel and aspirin or DAPT alone.
MAIN OUTCOME MEASURES:
The primary outcome was platelet function, reflected by adenosine diphosphate (ADP)-induced platelet aggregation and platelet microparticles (PMPs). The secondary outcomes were major adverse cardiovascular events (MACEs) including recurrent ischemia or myocardial infarction, repeat PCI and cardiac death; blood biomarkers for myocardial injury including creatine kinase-MB isoenzyme (CK-MB) and high-sensitive troponin I (hsTnI); and biomarkers for inflammation including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and galectin-3.
RESULTS:
A total of 118 subjects (mean age: [66.8 ± 8.9] years; male: 59.8%) were included into analysis: 58 in the control group and 60 in the STDP group. CYP2C19 genotype distribution was comparable between the 2 groups. In comparison to the control group, the STDP group had significantly lower CK-MB (P < 0.05) but similar hsTnI (P > 0.05) at 24 h after PCI, lower ICAM-1, VCAM-1, MCP-1 and galectin-3 at 3 months (all P < 0.05) but not at 7 days after PCI (P > 0.05). At 3 months, the STDP group had lower PMP number ([42.9 ± 37.3] vs. [67.8 ± 53.1] counts/μL in the control group, P = 0.05). Subgroup analysis showed that STDP increased percentage inhibition of ADP-induced platelet aggregation only in slow metabolizers (66.0% ± 20.8% in STDP group vs. 36.0% ± 28.1% in the control group, P < 0.05), but not in intermediate or fast metabolizers. The rate of MACEs during the 3-month follow-up did not differ between the two groups.
CONCLUSION:
STDP produced antiplatelet, anti-inflammatory and cardioprotective effects. Subgroup analysis indicated that STDP inhibited residual platelet reactivity in slow metabolizers only.
TRIAL REGISTRATION
This study was registered on www.chictr.org.cn: ChiCTR-IPR-16009785.
Adenosine Diphosphate
;
Angina, Unstable/chemically induced*
;
Animals
;
Biomarkers
;
Clopidogrel
;
Cytochrome P-450 CYP2C19/genetics*
;
Drugs, Chinese Herbal
;
Galectin 3
;
Humans
;
Intercellular Adhesion Molecule-1
;
Male
;
Mice
;
Percutaneous Coronary Intervention/adverse effects*
;
Platelet Aggregation Inhibitors/adverse effects*
;
Vascular Cell Adhesion Molecule-1/genetics*
8.Effects of Tripterine on Adhesion Molecules and Cell Cycle in Human Acute Promyelocytic Leukemia Model Mice.
Deng-Peng SONG ; Sheng-Ying WU
Journal of Experimental Hematology 2021;29(1):72-76
OBJECTIVE:
To observe the effects of tripterine on adhesion molecules and cell biological characteristics in mice with acute promyelocytic leukemia (APL) tumor.
METHODS:
Eighteen SCID beige mice were caudal vein injected with NB4 cell lines (5×10
RESULTS:
The neutrophil decrased and promyelocytes, NB4 cells, B lymphocytes and white blood cells increased in tumor-bearing group as compared with control group (P<0.05), and the expressions of serum P-selectin (P-selectin), soluble vascular adhesion molecule-1 (soluble vascular adhesion molecule-1, sVCAM-1) and soluble intercellular adhesion molecule-1 (soluble intercellular adhesion molecule-1, sICAM-1) all increased (P<0.05). The cell cycle showed that the proportion of G
CONCLUSION
Tripterine may not only inhibit the expression of sVCAM-1 and sICAM-1 proteins in APL tumor-bearing mice and reduce the adhesion of tumor cells, but also block tumor cells at G
Animals
;
Cell Cycle
;
Cell Division
;
Humans
;
Intercellular Adhesion Molecule-1
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Mice
;
Mice, SCID
;
Triterpenes
;
Vascular Cell Adhesion Molecule-1
9.Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes.
Jie SHEN ; Di YANG ; Meng Yuan CHEN ; Xin Biao GUO
Journal of Peking University(Health Sciences) 2021;53(3):439-446
OBJECTIVE:
To investigate the effects of multi-walled carbon nanotubes (MWCNTs) with different length or chemical modification on endothelial cell activation and to explore the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome.
METHODS:
MWCNTs were characterized by dynamic light scattering (DLS) after being suspended in culture medium. The immortalized mouse cerebral microvascular endothelial cell line b.End3 was treated with short MWCNTs (S-MWCNT, 0.5 to 2 μm), long MWCNTs (L-MWCNT, 10 to 30 μm) and the above long MWCNTs functionalized by carboxyl-(L-MWCNT-COOH), amino-(L-MWCNT-NH2) or hydroxyl-(L-MWCNT-OH) modification. Cytotoxicity of MWCNTs in b.End3 cells was determined by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay, and non-toxic low dose was selected for subsequent experiments. Effects of all types of MWCNTs on the endothelial activation of b.End3 were determined by the measurement of vascular cell adhesion molecule-1 (VCAM-1) concentration in cell supernatant and adhesion assay of human monocytic cell line THP-1 to b.End3.To further elucidate the mechanism involved, the protein expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3(NLRP3) in cells treated with S-MWCNT, L-MWCNT and L-MWCNT-COOH were measured by Western blot.
RESULTS:
At a higher concentration (125 μg/cm2) and treated for 24 h, all types of MWCNTs significantly inhibited viability of b.End3 cells. At a sub-toxic concentration (6.25 μg/cm2), all types of MWCNTs treated for 12 h significantly induced the activation of b.End3 cells, as evidenced by the elevated VCAM-1 release and THP-1 adhesion. Compared with S-MWCNT, L-MWCNT significantly promoted endothelial cell activation. L-MWCNT and L-MWCNT-COOH activated b.End3 cells to a similar extent. Furthermore, treatment with S-MWCNT, L-MWCNT and L-MWCNT-COOH increased NLRP3 expression in a time-dependent manner at 6.25 μg/cm2. Compared with S-MWCNT, cells treated with L-MWCNT for 4 h and 12 h exhibited significantly increased protein expressions of NLRP3. However, no significant differences were detected in the level of NLRP3 protein in cells treated with L-MWCNT and L-MWCNT-COOH.
CONCLUSION
Compared with the surface chemical modification, length changes of MWCNTs exerted more influence on endothelial cell activation, which may be related to the activation of NLRP3 inflammasome. Our study contributes further understanding of the impact of MWCNTs on endothelial cells, which may have implications for the improvement of safety evaluation of MWCNTs.
Cell Line
;
Cell Survival
;
Endothelial Cells
;
Nanotubes, Carbon/toxicity*
;
Vascular Cell Adhesion Molecule-1
10.Novel Associations between Related Proteins and Cellular Effects of High-Density Lipoprotein
Seungbum CHOI ; Yae Eun PARK ; Eun Jeong CHEON ; Kyeong Yeon KIM ; Miso KIM ; Soo jin ANN ; Hye Min NOH ; Jaeho LEE ; Chan Joo LEE ; Seung Taek LEE ; Cheolju LEE ; Ji Eun LEE ; Sang Hak LEE
Korean Circulation Journal 2020;50(3):236-247
BACKGROUND AND OBJECTIVES: Recent studies have examined the structure-function relationship of high-density lipoprotein (HDL). This study aimed to identify and rank HDL-associated proteins involved in several biological function of HDL.METHODS: HDLs isolated from 48 participants were analyzed. Cholesterol efflux capacity, effect of HDL on nitric oxide production, and vascular cell adhesion molecule-1 expression were assessed. The relative abundance of identified proteins in the highest vs. lowest quartile was expressed using the normalized spectral abundance factor ratio.RESULTS: After adjustment by multiple testing, six proteins, thyroxine-binding globulin, alpha-1B-glycoprotein, plasma serine protease inhibitor, vitronectin, angiotensinogen, and serum amyloid A-4, were more abundant (relative abundance ratio ≥2) in HDLs with the highest cholesterol efflux capacity. In contrast, three proteins, complement C4-A, alpha-2-macroglobulin, and immunoglobulin mu chain C region, were less abundant (relative abundance ratio <0.5). In terms of nitric oxide production and vascular cell adhesion molecule-1 expression, no proteins showed abundance ratios ≥2 or <0.5 after adjustment. Proteins correlated with the functional parameters of HDL belonged to diverse biological categories.CONCLUSIONS: In summary, this study ranked proteins showing higher or lower abundance in HDLs with high functional capacities and newly identified multiple proteins linked to cholesterol efflux capacity.
Amyloid
;
Angiotensinogen
;
Atherosclerosis
;
Cardiovascular Diseases
;
Cholesterol
;
Complement System Proteins
;
Immunoglobulin mu-Chains
;
Lipoproteins
;
Nitric Oxide
;
Plasma
;
Proteomics
;
Serine Proteases
;
Thyroxine-Binding Globulin
;
Vascular Cell Adhesion Molecule-1
;
Vitronectin

Result Analysis
Print
Save
E-mail