1.Clinical and genetic characteristics of osteopetrosis in children.
Min WANG ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Jie WANG ; Ya-Ping WANG ; Shan GAO ; Yan LI ; Tian-Ping CHEN ; Hong-Jun LIU ; Jian WANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):568-573
OBJECTIVES:
To study the clinical and genetic characteristics of osteopetrosis (OPT) in children.
METHODS:
A retrospective analysis was performed on the clinical data of 14 children with OPT. Whole-exome sequencing was used to detect pathogenic genes, and clinical phenotypes and genotypic features were summarized.
RESULTS:
Among the 14 children (10 males and 4 females), the median age at diagnosis was 8 months. Clinical manifestations included systemic osteosclerosis (14 cases, 100%), anemia (12 cases, 86%), infections (10 cases, 71%), thrombocytopenia (9 cases, 64%), hepatosplenomegaly (8 cases, 57%), and developmental delay (5 cases, 36%). Malignant osteopetrosis (MOP) cases had lower platelet counts, creatine kinase isoenzyme, and serum calcium levels, but higher white blood cell counts, lactate dehydrogenase, and alkaline phosphatase levels compared to non-MOP cases (P<0.05). Genetic testing identified 15 variants in 12 patients, including 8 variants in the CLCN7 gene (53%), 6 in the TCIRG1 gene (40%), and 1 in the TNFRSF11A gene (7%). Three novel CLCN7 variants were identified: c.2351G>C, c.1215-43C>T, and c.1534G>A. All four patients with TCIRG1 variants exhibited MOP clinical phenotypes. Of the seven patients with CLCN7 variants, 4 presented with intermediate OPT, 2 with benign OPT, and 1 with MOP.
CONCLUSIONS
Clinical phenotypes of OPT in children are heterogeneous, predominantly involving CLCN7 and TCIRG1 gene variants, with a correlation between clinical phenotypes and genotypes.
Humans
;
Osteopetrosis/genetics*
;
Male
;
Female
;
Infant
;
Child, Preschool
;
Retrospective Studies
;
Vacuolar Proton-Translocating ATPases/genetics*
;
Child
;
Chloride Channels/genetics*
;
Mutation
;
Receptor Activator of Nuclear Factor-kappa B
2.Analysis of clinical presentation and genetic characteristics of malignant infantile osteopetrosis.
Ang WEI ; Guang Hua ZHU ; Mao Quan QIN ; Chen Guang JIA ; Bin WANG ; Jun YANG ; Yan Hui LUO ; Yuan Fang JING ; Yan YAN ; Xuan ZHOU ; Tian You WANG
Chinese Journal of Pediatrics 2023;61(11):1038-1042
Objective: To investigate the clinical presentation and genetic characteristics of malignant infantile osteopetrosis. Methods: This was a retrospective case study. Thirty-seven children with malignant infantile osteopetrosis admitted into Beijing Children's Hospital from January 2013 to September 2022 were enrolled in this study. According to the gene mutations, the patients were divided into the CLCN7 group and the TCIRG1 group. Clinical characteristics, laboratory tests, and prognosis were compared between two groups. Wilcoxon test or Fisher exact test were used in inter-group comparison. The survival rate was estimated with the Kaplan-Meier method and the Log-Rank test was used to compare the difference in survival between groups. Results: Among the 37 cases, there were 22 males and 15 females. The age of diagnosis was 0.5 (0.2, 1.0) year. There were 13 patients (35%) and 24 patients (65%) with mutations in CLCN7 and TCIRGI gene respectively. Patients in the CLCN7 group had an older age of diagnosis than those in the TCIRGI group (1.2 (0.4, 3.6) vs. 0.4 (0.2, 0.6) years, Z=-2.60, P=0.008). The levels of serum phosphorus (1.7 (1.3, 1.8) vs. 1.1 (0.8, 1.6) mmol/L, Z=-2.59, P=0.010), creatine kinase isoenzyme (CK-MB) (457 (143, 610) vs. 56 (37, 82) U/L, Z=-3.38, P=0.001) and the level of neutrophils (14.0 (9.9, 18.1) vs. 9.2 (6.7, 11.1) ×109/L, Z=-2.07, P=0.039) at diagnosis were higher in the CLCN7 group than that in the TCIRG1 group. However, the level of D-dimer in the CLCN7 group was lower than that in the TCIRGI group (2.7 (1.0, 3.1) vs. 6.3 (2.5, 9.7) μg/L, Z=2.83, P=0.005). After hematopoietic stem cell transplantation, there was no significant difference in 5-year overall survival rate between the two groups (92.3%±7.4% vs. 83.3%±7.6%, χ²=0.56, P=0.456). Conclusions: TCIRGI gene mutations are more common in children with osteopetrosis. Children with TCIRGI gene mutations have younger age, lower levels of phosphorus, CK-MB, and neutrophils and higher level of D-dimer at the onset. After hematopoietic stem cell transplantation, patients with CLCN7 or TCIRGI gene mutations have similar prognosis.
Child
;
Male
;
Female
;
Humans
;
Osteopetrosis/therapy*
;
Retrospective Studies
;
Prognosis
;
Genes, Recessive
;
Phosphorus
;
Chloride Channels/genetics*
;
Vacuolar Proton-Translocating ATPases/genetics*
3.Numb activates the mTORC1 signaling pathway in proximal tubular epithelial cells by upregulating V1G1 expression.
Ze LIU ; Da YOU ; Yong LI ; Yong Mei HE ; A Fang LI ; Pan LI ; Chun Yan LI
Journal of Southern Medical University 2022;42(10):1462-1469
OBJECTIVE:
To investigate the role of Numb in regulating mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway.
METHODS:
Male BALB/C mouse models of acute kidney injury (AKI) were subjected to intravenous injections of Numb-siRNA or NC-siRNA with or without intraperitoneal cisplatin injections. After the treatments, the expressions and distribution of Numb and megalin in the renal tissues of the mice were detected with immunohistochemistry, and the renal expressions of Numb, S6, p-S6, S6K1, p-S6K1, 4EBP1 and p-4EBP1 were examined with Western blotting. The proximal renal tubular epithelial cells were isolated from the mice transfected with Numb-siRNA for in vitro culture. In NRK-52E cells, the effects of amino acid stimulation, Numb knockdown, and V1G1 overexpression, alone or in combination, on expressions of Numb, S6 and p-S6 were detected with Western blotting; the expressions of AMPK and p-AMPK were also detected in transfected NRK-52E cells, mouse kidneys and cultured mouse renal tubular epithelial cells.
RESULTS:
In BALB/C mice, injection of Numb-siRNA caused significant reductions of Numb and p-S6 expressions without affecting megalin expression in the renal proximal tubules (P < 0.05). Cisplatin treatment obviously upregulated p-S6K1 and p-4EBP1 expressions in the kidneys of the mice (P < 0.05), and this effect was significantly inhibited by treatment with Numb-siRNA (P < 0.05). In NRK-52E cells, amino acid stimulation significantly upregulated the expression of p-S6 (P < 0.05), which was strongly suppressed by transfection with Numb-siRNA (P < 0.05). Numb knockdown inhibited AMPK activation in NRK-52E cells, mouse kidneys and primary proximal tubular epithelial cells (P < 0.05). Numb knockdown significantly downregulated V1G1 expression in NRK-52E cells (P < 0.05), and V1G1 overexpression obviously reversed the inhibitory effect of Numb-siRNA on S6 phosphorylation (P < 0.05).
CONCLUSION
Numb promotes the activation of mTORC1 signaling in proximal tubular epithelial cells by upregulating V1G1 expression.
Animals
;
Male
;
Mice
;
Amino Acids/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Cisplatin/pharmacology*
;
Epithelial Cells
;
Low Density Lipoprotein Receptor-Related Protein-2/metabolism*
;
Mammals/metabolism*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Membrane Proteins/metabolism*
;
Mice, Inbred BALB C
;
Nerve Tissue Proteins/metabolism*
;
RNA, Small Interfering/metabolism*
;
Signal Transduction
;
Vacuolar Proton-Translocating ATPases/metabolism*
4.Novel tumor metastasis suppressorgene LASS2/TMSG1 S248A mutant promotes invasion of prostate cancer cells through increasing ATP6V0C expression.
Kuan Gen ZHANG ; Yu He ZHOU ; Ya Kun SHAO ; Fang MEI ; Jiang Feng YOU ; Bei Ying LIU ; Fei PEI
Journal of Peking University(Health Sciences) 2019;51(2):210-220
OBJECTIVE:
LASS2/TMSG1 gene is a novel tumor metastasis suppressor gene cloned from human prostate cancer cell line PC-3M in 1999 by Department of Pathology,Peking University of Basic Medical Sciences. It was found out that protein encoded by LASS2/TMSG1 could interact with the c subunit of vacuolar-ATPase (ATP6V0C). In this study, we explored the effect of LASS2/TMSG1 and its mutants on proliferation, migration and invasion of human prostate cancer cells and its molecular mechanism.
METHODS:
We constructed four LASS2/TMSG1 mutants and stably transfected the variants to human prostate cancer cell line PC-3M-1E8 cell with high metastatic potential. The stable transfectants were identified by qPCR and Western blot through analyzing the expression of LASS2/TMSG1 and ATP6V0C, the cell biology functions of LASS2/TMSG1 and its four mutants were studied using growth curve,MTT assay, soft agar colony formation assay, wound migration assay, Matrigel invasion study and flow cytometry. Furthermore, immunofluorescence was used to analysis the interaction of LASS2/ TMSG1 mutants and ATP6V0C.
RESULTS:
LASS2/TMSG1 mRNA and protein in LASS2/TMSG1 group and Mut1-Mut4 groups were higher than that in Vector group; Western blot showed that ATP6V0C protein in LASS2/TMSG1 wild group was lower than that in Vector group, but ATP6V0C protein in LASS2/TMSG1 S248A group was obviously higher than that in Vector group. MTT test and growth curve assay showed growth ability in LASS2/TMSG1 S248A group was increasing compared with other groups from day 5. Soft Agar colony formation experiment showed anchor independent growth ability in LASS2/TMSG1 S248A group was higher than those in the other groups (P<0.05), Cell migrations (from 35.3%±3.2% to 70.3%±3%) in LASS2/TMSG1 S248A group was increasing compared with LASS2/TMSG1 wild group (P<0.01), and more cells passed through Matrigel in LASS2/TMSG1 S248A group compared with LASS2/TMSG1 wild group (from 50±3.2 to 203±6.5, P<0.01), the apoptosis rate in LASS2/TMSG1 S248A group was obviously higher than that in LASS2/TMSG1 wild group (from 7% to 15.1%, P<0.05), and the G0/G1 ratio in LASS2/TMSG1 S248A group was obviously higher than that in LASS2/TMSG1 wild group (from 51.0% to 85.4%). Furthermore, double immunofluorescent staining observed the colocalization between ATP6V0C and LASS2/TMSG1 protein and its mutations, the expression of ATP6V0C in LASS2/TMSG1 S248A group increased significantly compared with the other groups.
CONCLUSION
LASS2/TMSG1 S248A promotes proliferation, migration and invasion of prostate cancer cells through increasing ATP6V0C expression, suggesting that aa248-250 is an important function site for LASS2/TMSG1 in invasion suppression of prostate cancer cells.
Beijing
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Humans
;
Male
;
Membrane Proteins/genetics*
;
Mutation
;
Neoplasm Invasiveness
;
Prostatic Neoplasms/genetics*
;
Sphingosine N-Acyltransferase/genetics*
;
Transfection
;
Tumor Suppressor Proteins/genetics*
;
Vacuolar Proton-Translocating ATPases
5.Analysis of TCIRG1 gene mutation in a Chinese family affected with infantile malignant osteopetrosis.
Min WANG ; Tianping CHEN ; Ling JIN ; Lijun QU ; Jian WANG ; Yan LI ; Jie CHENG ; Zhe XU ; Chengjun WANG ; Shan GAO
Chinese Journal of Medical Genetics 2017;34(3):377-381
OBJECTIVETo detect potential mutation of the TCIRG1 gene in a boy with infantile malignant osteopetrosis.
METHODSTarget sequence capture and next-generation sequencing were applied for the proband and his parents to identify the causative mutation, and Sanger sequencing was used to verify the suspected mutation.
RESULTSThe proband manifested at 4 months of age with symptoms including anemia, thrombocytopenia, hepatosplenomegaly, and cephalus quadratus. X-ray revealed generalized increased bone density. A novel compound heterozygous mutation, c.796G to T (p.E266X) and c.1372G to A (p.G458S), were identified in the boy. His father and grandmother also carried the c.796G to T (p.E266X) mutation, and his mother carried the c.1372G to A (p.G458S) mutation. Neither mutation was found in the PubMed and ClinVar databases.
CONCLUSIONThe novel compound heterozygous mutation c.796G to T (p.E266X) and c.1372G to A (p.G458S) probably underlies the disease in the proband. Above results may enrich the mutation spectrum of the TCIRG1 gene and provide new evidence for the molecular basis of infantile malignant osteopetrosis.
Adult ; Asian Continental Ancestry Group ; Base Sequence ; Humans ; Infant ; Infant, Newborn ; Infant, Newborn, Diseases ; genetics ; Male ; Middle Aged ; Molecular Sequence Data ; Mutation ; Osteopetrosis ; genetics ; Pedigree ; Vacuolar Proton-Translocating ATPases ; genetics
6.Proton Pump Inhibition Enhances the Cytotoxicity of Paclitaxel in Cervical Cancer.
Taejong SONG ; Hye Kyung JEON ; Ji Eun HONG ; Jung Joo CHOI ; Tae Joong KIM ; Chel Hun CHOI ; Duk Soo BAE ; Byoung Gie KIM ; Jeong Won LEE
Cancer Research and Treatment 2017;49(3):595-606
PURPOSE: This study was conducted to investigate whether a proton pump inhibitor (PPI) could enhance chemosensitivity via the inhibition of vacuolar-type H⁺ ATPase (V-ATPase) in cervical cancer. MATERIALS AND METHODS: The expression of V-ATPase was evaluated in 351 formalin-fixed, paraffin-embedded human cervical cancer tissues using immunohistochemistry and compared with clinicopathologic risk factors for disease prognosis. The influence of cell proliferation and apoptosis following V-ATPase siRNA transfection or esomeprazole pretreatment was assessed in cervical cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and enzyme-linked immunosorbent assay, respectively. RESULTS: Immunohistochemical analysis revealed that V-ATPase was expressed in about 60% of cervical cancer tissue samples (211/351), and the expression was predominantly found in adenocarcinoma histology (p=0.016). Among patients with initially bulky cervical cancer (n=89), those with V-ATPase expression had shorter disease-free survival (p=0.005) and overall survival (p=0.023). Co-treatment with V-ATPase siRNA or esomeprazole with paclitaxel significantly decreased the cell proliferation of cervical cancer cell lines, including HeLa and INT407, compared to cell lines treated with paclitaxel alone (p < 0.01). Moreover, V-ATPase siRNA or esomeprazole followed by paclitaxel significantly increased the expression of active caspase-3 in these cells compared to cells treated with paclitaxel alone (both, p < 0.05). CONCLUSION: V-ATPase was predominantly expressed in cervical adenocarcinoma, and the expression of V-ATPases was associated with poor prognosis. The inhibition of V-ATPase via siRNA or PPI (esomeprazole) might enhance the chemosensitivity of paclitaxel in cervical cancer cells.
Adenocarcinoma
;
Adenosine Triphosphatases
;
Antineoplastic Agents
;
Apoptosis
;
Caspase 3
;
Cell Line
;
Cell Proliferation
;
Disease-Free Survival
;
Enzyme-Linked Immunosorbent Assay
;
Esomeprazole
;
Humans
;
Immunohistochemistry
;
Paclitaxel*
;
Prognosis
;
Proton Pump Inhibitors
;
Proton Pumps*
;
Protons*
;
Risk Factors
;
RNA, Small Interfering
;
Transfection
;
Uterine Cervical Neoplasms*
;
Vacuolar Proton-Translocating ATPases
7.Effect of synergistic polarization macrophage modulated by N-terminal domain of a2 vacuolar ATPase and macrophage colony stimulating factor on proliferation of gastric cancer cells.
Dandan LIAN ; Guiliang MA ; Chen SUN ; Weizheng MAO
Chinese Journal of Gastrointestinal Surgery 2016;19(2):209-215
OBJECTIVETo investigate the synergistic effect between the N-terminus domain of the a2 isoform of vacuolar ATPase (a2NTD) and macrophage colony-stimulating factor (M-CSF) on modulating macrophage polarization and the impact of polarized macrophages on proliferation of gastric cancer cells.
METHODSPeripheral blood mononuclear cells were derived from healthy donor and induced into macrophages. Then macrophages were randomly divided into four groups: the control group (RPMI 1640), the experimental group I (M-CSF 100 μg/L), the experimental group II (a2NTD 500 μg/L) and the experimental group III (a2NTD 500 μg/L plus M-CSF 100 μg/L). After stimulation for 48 hours, double color immunofluorescence cytochemistry was adopted to detect the expression of cell membrane molecules on macrophages; ELISA was used to measure the secretion of cytokines IL-10 and IL-12; CCK-8 assay was used to evaluate the impact of macrophages on proliferation ability of gastric cancer cell strain SGC-7901.
RESULTSThe expression of CD68, also known as macrophage surface antigen, was detected on macrophage membrane in all four groups (+). The mean absorbance (A) was 0.092 ± 0.005 in control group, 0.095 ± 0.006 in group I, 0.094 ± 0.005 in group II, 0.094 ± 0.005 in group III, and no significant differences were observed among 4 groups (all P>0.05). Meanwhile, the expression of CD206, which mainly exists on M2 macrophage membrane, was hard to detect in control group (-) with A 0.025 ± 0.004; it was normal in groupI and group II (+) with A 0.191 ± 0.012 in group I and 0.197 ± 0.136 in group II (P=0.212), and it was up-regulated significantly in group III (+++) with A 0.285 ± 0.011. There were significant differences between either two groups except group I and group II (all P<0.01). Secretion of IL-10 in group I and group II [(85.65 ± 13.64) ng/L and (87.77 ± 14.25) ng/L] was significantly higher compared with control group [(71.67 ± 7.56) ng/L, P<0.01]. Secretion of IL-12 in group I and group II [(9.91 ± 1.50) ng/L and (10.15 ± 1.80) ng/L] was significantly lower compared with control group [(16.87 ± 1.10) ng/L, P<0.01]. Secretion of IL-10 in group III [(116.98 ± 14.27) ng/L] was the highest, and secretion of IL-12 [(5.31 ± 0.88) ng/L] was the lowest (all P<0.01). There was a synergistic effect between a2NTD and M-CSF on the secretion of both IL-10 and IL-12. Elevated proliferation of gastric cancer cell strain SGC-7901 was detected in all four groups, in which group III showed the greatest impact compared with other 3 groups (P<0.01).
CONCLUSIONSa2NTD and M-CSF show a synergistic effect in modulating macrophage phenotype and the secretion of IL-10 and IL-12. The polarized macrophage can significantly enhance proliferation of gastric cancer cell strain SGC-7901.
Cell Proliferation ; Humans ; Interleukin-10 ; metabolism ; Interleukin-12 ; metabolism ; Macrophage Colony-Stimulating Factor ; pharmacology ; Macrophages ; cytology ; Phenotype ; Stomach Neoplasms ; pathology ; Tumor Cells, Cultured ; Vacuolar Proton-Translocating ATPases ; pharmacology
8.Gene cloning and expression characteristics of vacuolar-type ATPase subunit B in Bombyx mori.
Huifang CHEN ; Xin WANG ; Kang XIE ; Yi LI ; Ping ZHAO
Chinese Journal of Biotechnology 2016;32(4):487-496
Vacuolar-type ATPase (V-ATPase), located in the membrane and organelle membrane, is one of important H⁺-transporting proteins. It keeps the proton balance by transporting H⁺ into vacuole, vesicle, or extracellular using the energy from ATP hydrolysis. The subunit B of the vacuolar-type ATPase (BmV-ATPase B) contains the ATP catalytic site, and plays an important role in this process. To study the function of V-ATPase B in Bombyx mori (BmV-ATPase B), we cloned its coding gene from the midgut of the 5th instar silkworm larvae. Then we constructed prokaryotic expression vector and produced the recombinant protein in E. coli. The recombinant protein was identified as BmV-ATPase B by mass spectrometry and purified using Ni-NTA affinity chromatography. This purified protein was used to immunize rabbit to generate polyclonal antibodies of BmV-ATPase B. Finally, the expression patterns of BmV-ATPase B in the silk gland were analyzed by western blotting and immunofluorescence. The full length CDS sequence of BmV-ATPase B was 1 473 bp. BmV-ATPase B was 55 kDa with a PI of 5.3. We analyzed the expression patterns of BmV-ATPase B in different sections of silk gland from the silkworm on the 3rd day of 5th instar and 1st day of wander stage by western blotting. BmV-ATPase B was expressed in all sections of the silk gland and it was abundant in the anterior silk gland (ASG) both in these two developmental stages. Furthermore, immunofluorescence indicated that BmV-ATPase B was located in the silk gland cells. Laser confocal scanning microscopy analysis revealed that BmV-ATPase B was mainly expressed in the cytomembrane of silk gland cells. These data elucidated the expression patterns of BmV-ATPase B in the silk gland of silkworm, which provides a good basis for further studies on the function of V-ATPase B in silk fiber formation.
Animals
;
Bombyx
;
enzymology
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Insect Proteins
;
genetics
;
metabolism
;
Larva
;
Recombinant Proteins
;
genetics
;
metabolism
;
Silk
;
Vacuolar Proton-Translocating ATPases
;
genetics
;
metabolism
9.Preimplantation genetic diagnosis of infantile malignant osteopetrosis in a Chinese family.
Ping YUAN ; Yanhong ZENG ; Lingyan ZHENG ; Jia DENG ; Jing WANG ; Yanwen XU ; Canquan ZHOU
Chinese Journal of Medical Genetics 2015;32(3):307-311
OBJECTIVETo explore the application of preimplantation genetic diagnosis (PGD) for infantile malignant osteopetrosis (IMO).
METHODSFor a family affected with IMO, PGD was provided using combined parental mutation detection and haplotype constructions with microsatellite markers spanning the TCIRG1 gene. Prenatal diagnosis was performed on the chorionic villus and amniocentesis samples by direct sequencing.
RESULTSPrenatal diagnosis showed that the fetus by the third pregnancy has carried the parental mutations [c.242delC (p.Pro81Argfs*85) and c.1114C>T (p.Gln372*)], and the pregnancy was terminated. PGD was subsequently performed through mutations detection and haplotype analyses following whole genome amplification (WGA) of each of 13 cells. The results showed that 6 of the 13 embryos were unaffected, 3 were carriers and 4 were affected. Well developed unaffected/carrier embryos were selected and transferred into the uterus. A single pregnancy was confirmed. Subsequently pre- and post-natal diagnoses have confirmed development of a healthy child.
CONCLUSIONThe study demonstrated the advantage of PGD over prenatal diagnosis when natural pregnancies have repeatedly produced IMO children/fetuses.
Adult ; Base Sequence ; Female ; Fertilization in Vitro ; Fetus ; Genetic Carrier Screening ; Humans ; Infant ; Male ; Microsatellite Repeats ; Molecular Sequence Data ; Osteopetrosis ; diagnosis ; embryology ; genetics ; prevention & control ; Pedigree ; Point Mutation ; Pregnancy ; Preimplantation Diagnosis ; Vacuolar Proton-Translocating ATPases ; genetics
10.LASS2/TMSG1 gene silencing promotes the invasiveness and metastatic of human prostatic carcinoma cells through increase in vacuolar ATPase activity.
Xiaoyan XU ; Jiangfeng YOU ; Fei PEI
Chinese Journal of Pathology 2014;43(3):177-183
OBJECTIVETo explore the effects of LASS2/TMSG1 silencing on the growth, invasion and metastasis of prostate carcinoma cells and to investigate the related molecular mechanisms.
METHODSLASS2/TMSG1 expression of human prostate carcinoma cell line with low metastatic potentiality (PC-3M-2B4 cells) was knocked down using DNA vector-based small interfering RNA (shRNA), followed by evaluations of tumor cell invasion and metastasis.
RESULTSA stable PC-3M-2B4 cell line with expression of LASS2/TMSG1-shRNA was successfully established. MTT assay showed PC-3M-2B4 cells exhibited a strong proliferation after transfection of LASS2/TMSG1-shRNA.LASS2/TMSG1-shRNA transfected clones demonstrated an increased clonogenicity by soft agar colony formation assay and a significant increase of tumor cell invasion by matrigel invasion study.Flow cytometry showed that after LASS2/TMSG1 gene silencing, the apoptotic rate of PC-3M-2B4 cell significantly decreased (P<0.01) without significant cell cycle change (P>0.05).Eight weeks after implantation into subcutaneous tissues in BAL B/c (nu+) mice, the size and weight of sh-LASS2/TMSG1 xenografts were significantly larger than those of the control group (P<0.05).Nuclear proliferation index of the subcutaneous tumor was also higher in the LASS2/TMSG1 shRNA group than those in the control group. Lymph node metastasis was observed in 5 of 6 mice of LASS2/TMSG1 shRNA group and only 1 of 6 of the control group. V-ATPase activity, activities of secreted MMP-2 and MMP-9 and extracellular hydrogen ion concentration were significantly increased in LASS2/TMSG1-shRNA group compared with the control group (P<0.05).
CONCLUSIONSilencing of LASS2/TMSG1 promotes the growth, invasion and metastasis of prostate cancer cells through up-regulation of V-ATPase activity, indicating that LASS2/TMSG1 is a tumor metastasis suppressor gene.
Animals ; Apoptosis ; Cell Cycle ; Cell Line, Tumor ; Gene Silencing ; Humans ; Hydrogen-Ion Concentration ; Lymphatic Metastasis ; Male ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Membrane Proteins ; genetics ; metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Invasiveness ; Neoplasm Transplantation ; Prostatic Neoplasms ; genetics ; metabolism ; pathology ; RNA, Small Interfering ; genetics ; Sphingosine N-Acyltransferase ; genetics ; metabolism ; Transfection ; Tumor Burden ; Tumor Suppressor Proteins ; genetics ; metabolism ; Up-Regulation ; Vacuolar Proton-Translocating ATPases ; metabolism

Result Analysis
Print
Save
E-mail