1.Process parameter optimization and immunogenicity evaluation of calcium phosphate-coated foot-and-mouth disease virus-like particles.
Lihua REN ; Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Shiqi SUN ; Hu DONG ; Yun ZHANG ; Manyuan BAI ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2672-2681
Bio-mineralization has emerged as a promising strategy to enhance vaccine immunogenicity. This study optimized the calcium phosphate (CaP) mineralization process of foot-and-mouth disease virus-like particles (FMD VLPs) to achieve high mineralization efficiency and scalability. Key parameters, including concentrations of Ca2+, HPO42-, NaCl, and VLPs, as well as stirring speed, were systematically optimized. Stability of the scaled-up reaction system and immunogenicity of the mineralized vaccine were evaluated. Optimal conditions [25.50 mmol/L Ca(NO3)2, 15 mmol/L Na2HPO4, 300 mmol/L NaCl, 0.75 mg/mL VLPs, and 1 500 r/min] yielded CaP-mineralized VLPs (VLPs-CaP) with high mineralization efficiency, uniform morphology, and a favorable particle size. Scaling up the reaction by 25 folds maintained consistent mineralization efficiency and particle characteristics. Immunization in mice demonstrated that VLPs-CaP induced higher titers of specific antibodies and neutralizing antibodies than unmineralized VLPs (P < 0.05). Higher IgG2a/IgG1 ratio and enhanced IFN-γ secretion (P < 0.05) further indicated robust cellular immune responses. We establish a stable and scalable protocol for VLPs-CaP, providing a theoretical and technical foundation for developing high-efficacy VLPs-CaP vaccines.
Vaccines, Virus-Like Particle/immunology*
;
Immunogenicity, Vaccine
;
Calcium Phosphates/chemistry*
;
Foot-and-Mouth Disease Virus
;
Biomineralization
;
Particle Size
;
Animals
;
Mice
;
Antibodies, Neutralizing/blood*
;
Antibodies, Viral/blood*
;
Immunity, Cellular
2.Effects of vacuum freeze-drying based on different lyoprotectants on the stability of foot-and-mouth disease virus-like particles.
Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Hu DONG ; Yun ZHANG ; Xiaoqiang WANG ; Shiqi SUN ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2682-2693
Vaccination is a crucial strategy for the prevention and control of infectious diseases. Virus-like particles (VLPs), composed of structural proteins, have garnered significant attention as a novel type of vaccine due to their excellent safety and immunogenicity. However, similar to most vaccine antigens, VLPs exhibit insufficient thermal stability, which not only restricts the widespread application of vaccines but also increases the risk of vaccine inactivation. This study aims to enhance the stability and shelf life of VLPs derived from type A foot-and-mouth disease virus (FMDV) by employing vacuum freeze-drying technology. The optimal lyoprotectant formulation was determined through single-factor and combinatorial screening. Subsequently, the correlation between the immunogenicity of the freeze-dried vaccine and the content of FMDV VLPs was evaluated via a mouse model. The stability of FMDV VLPs before and after freeze-drying was further assessed by storing them at 4, 25, and 37 ℃ for varying time periods. Results indicated that the lyoprotectant formulation No.1, composed of 7.5% trehalose, 0.1% Tween 80, 50 mmol/L glycine, 1% sodium glutamate, and 3% polyvinylpyrrolidone (PVP), effectively preserved the content of FMDV VLPs during the vacuum freeze-drying process. The immunization trial in mice revealed that the levels of specific antibodies, immunoglobulin G1 (IgG1), interleukin-4 (IL-4), and neutralizing antibodies induced by freeze-dried FMDV VLPs were comparable to those induced by non-freeze-dried FMDV VLPs. The heat treatment results showed that the storage periods of freeze-dried FMDV VLPs at 4, 25, and 37 ℃ were significantly longer than those of non-freeze-dried FMDV VLPs. In conclusion, the selected lyoprotectant formulation effectively improved the stability of FMDV VLPs vaccines. This study provides valuable insights for enhancing the stability of novel subunit vaccines.
Freeze Drying/methods*
;
Animals
;
Foot-and-Mouth Disease Virus/immunology*
;
Mice
;
Vaccines, Virus-Like Particle/chemistry*
;
Foot-and-Mouth Disease/immunology*
;
Vacuum
;
Drug Stability
;
Mice, Inbred BALB C
;
Viral Vaccines/immunology*
3.Preparation and characterization of HBc virus like particles with site-directed coupling function.
Di LIU ; Bo LI ; Cheng BI ; Hongping QIAO ; Xiaoying WU
Chinese Journal of Biotechnology 2020;36(7):1440-1449
Hepatitis B virus core protein can self-assemble into icosahedral symmetrical viral-like particles (VLPs) in vitro, and display exogenous sequences repeatedly and densely on the surface. VLPs also have strong immunogenicity and biological activity. When the nanoparticles enter the body, they quickly induce specific humoral and cellular immune responses to exogenous antigens. In this study, we designed an HBc-VLPs that can be coupled with antigens at specific sites, and developed a set of efficient methods to prepare HBc-VLPs. Through site-specific mutation technology, the 80th amino acid of peptide was changed from Ala to Cys, a specific cross-linking site was inserted into the main immunodominant region of HBc-VLPs, and the prokaryotic expression vector pET28a(+)-hbc was constructed. After expression and purification, high purity HBc(A80C) monomer protein was assembled into HBc-VLPs nanoparticles in Phosphate Buffer. The results of particle size analysis show that the average particle size of nanoparticles was 29.8 nm. Transmission electron microscopy (TEM) showed that HBc-VLPs formed spherical particles with a particle size of about 30 nm, and its morphology was similar to that of natural HBV particles. The influenza virus antigen M2e peptide as model antigen was connected to Cys residue of HBc-VLPs by Sulfo-SMCC, an amino sulfhydryl bifunctional cross-linking agent, and M2e-HBc-VLPs model vaccine was prepared. The integrity of HBc-VLPs structure and the correct cross-linking of M2e were verified by cell fluorescence tracing. Animal immune experiments showed that the vaccine can effectively stimulate the production of antigen-specific IgG antibody in mice, which verified the effectiveness of the vaccine carrier HBc-VLPs. This study lays a foundation for the research of HBc-VLPs as vaccine vector, and help to promote the development of HBc-VLPs vaccine and the application of HBc-VLPs in other fields.
Animals
;
Hepatitis B Core Antigens
;
genetics
;
immunology
;
Immunity, Cellular
;
immunology
;
Immunoglobulin G
;
blood
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, Virus-Like Particle
;
genetics
;
immunology
4.Generation of Japanese Encephalitis Virus-like Particle Vaccine and Preliminary Evaluation of Its Protective Efficiency.
Yanfang ZHANG ; Ruikun DU ; Shaomei HUANG ; Tao ZHANG ; Jinliang LIU ; Bibo ZHU ; Hualin WANG ; Fei DENG ; Shengbo CAO
Chinese Journal of Virology 2016;32(2):150-155
The cDNA fragment of JEV prME gene was cloned into the baculovirus shuttle vector (bacmid) to construct a recombinant baculovirus vector, defined as AcBac-prME. Then the recombinant baculovirus Ac-prME was obtained by transfecting Sf9 cells with AcBac-prME. Western blot analysis and immunofluorescence results indicated that both prM and E proteins were efficiently expressed in Sf9 cells. Electron microscopy suggested that prME was assembled into JEV-VLPs. To further evaluate the potential of JEV-VLPs as vaccine, the mice were immunized with JEV-VLPs and then challenged with lethal JEV. The results of mice survival and pathological changes demonstrated that the JEV-VLPs performed complete protection against JEV-P3 strain and relieved pathological changes in the mice brain significant. This study suggest that JEV-VLPs would be a potential vaccine for Japanese encephalitis virus.
Animals
;
Antibodies, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
genetics
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
virology
;
Humans
;
Japanese Encephalitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Sf9 Cells
;
Vaccination
;
Vaccines, Virus-Like Particle
;
administration & dosage
;
genetics
;
immunology
;
Viral Envelope Proteins
;
administration & dosage
;
genetics
;
immunology
5.Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.
Lishan LV ; Xiaoming LI ; Genmei LIU ; Ran LI ; Qiliang LIU ; Huifang SHEN ; Wei WANG ; Chunyi XUE ; Yongchang CAO
Journal of Veterinary Science 2014;15(2):209-216
Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.
Animals
;
Antibodies, Viral/blood
;
*Chickens
;
Chimera/genetics/immunology
;
Coronavirus Infections/prevention & control/*veterinary/virology
;
Female
;
*Immunity, Innate
;
Infectious bronchitis virus/genetics/*immunology
;
Influenza A Virus, H5N1 Subtype/genetics/immunology
;
Injections, Intramuscular/veterinary
;
Mice
;
Mice, Inbred BALB C
;
Neuraminidase/genetics
;
Poultry Diseases/*prevention & control/virology
;
Recombinant Fusion Proteins/genetics/immunology
;
Spike Glycoprotein, Coronavirus/genetics/*immunology
;
Vaccines, Synthetic/administration & dosage/genetics/immunology
;
Vaccines, Virus-Like Particle/administration & dosage/genetics/*immunology
;
Viral Proteins/genetics
6.Induction of antibody and interferon-gamma production in mice immunized with virus-like particles of swine hepatitis E virus.
Young Jo SONG ; Woo Jung PARK ; Seul Kee LEE ; Joong Bok LEE ; Seung Yong PARK ; Chang Seon SONG ; Sang Won LEE ; Kun Ho SEO ; Young Sun KANG ; Jae Young SONG ; In Soo CHOI
Journal of Veterinary Science 2014;15(4):575-578
Virus-like particles (VLPs) composed of the truncated capsid protein of swine hepatitis E virus (HEV) were developed and immune responses of mice immunized with the VLPs were evaluated. IgG titers specific for the capsid protein of swine HEV were significantly higher for all groups of mice immunized with the VLPs than those of the negative control mice. Splenocytes from mice immunized with the VLPs also produced significantly greater quantities of interferon (IFN)-gamma than interleukin (IL)-4 and IL-10. These newly developed swine HEV VLPs have the capacity to induce antigen-specific antibody and IFN-gamma production in immunized mice.
Animals
;
Antibodies, Viral/blood
;
Capsid Proteins/immunology
;
Female
;
Hepatitis E/immunology/*veterinary/virology
;
Hepatitis E virus/*immunology
;
Immunization/*veterinary
;
Interferon-gamma/blood
;
Mice
;
Mice, Inbred BALB C
;
Swine
;
Swine Diseases/*immunology/virology
;
Vaccines, Virus-Like Particle/immunology
;
Viral Hepatitis Vaccines/*immunology
7.Prokaryotic expression and immunogenicity of the chimeric HBcAg containing Aβ(1-15).
Gaifeng FENG ; Hui JIN ; Weixi WANG ; Yihua QIAN ; Quanying WANG ; Guangxiao YANG
Journal of Central South University(Medical Sciences) 2012;37(3):290-295
OBJECTIVE:
To construct a recombinant prokaryoticexpression plasmid pET/ c-Aβ(15)-c, and evaluate the immunogenicity of its encoded fusion protein as expressed in E.coli.
METHODS:
The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The synthetic, double-strand Aβ(1-15) gene was inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-71- Aβ(15) was spliced to HBc88-144, yielding the recombinant gene c-Aβ(15)-c; that gene was subcloned into pET-28a(+). The fusion protein (CA15C) expressed in the transformed E.coli BL21 was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) and analyzed by SDS-PAGE. The virus-like particle (VLP) formed by fusion protein CA15C was observed with transmission electric microscope (TEM). Four Kunming (KM) mice were given intraperitoneal injections of CA15C, and the anti-Aβ antibody elicited was detected by indirect ELISA.
RESULTS:
The sequence of the recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, the fusion protein was expressed, mainly in the sediment from the bacterial lysate. The expression level was 40% of total protein in the sediment. The CA15C could form VLP. After 5 rounds of immunization, the titer of anti-Aβ antibody in the sera of KM mice reached 1:10000, while the anti-HBc antibody was undetectable.
CONCLUSION
Recombinant c-Aβ(15)-c gene can be expressed in E.coli. The expressed protein can form VLPs and has a strong immunogenicity.
Alzheimer Disease
;
prevention & control
;
Amyloid beta-Peptides
;
genetics
;
Animals
;
Base Sequence
;
Genetic Vectors
;
genetics
;
Hepatitis B Core Antigens
;
genetics
;
immunology
;
Humans
;
Mice
;
Molecular Sequence Data
;
Peptide Fragments
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
metabolism
;
Vaccines, Virus-Like Particle
;
genetics
;
immunology
;
metabolism
8.Effect of the glycine-rich region deleted PPV VP2 to the VLPs.
Dishi CHEN ; Wanzhu GUO ; Yang CHEN ; Zhiwen XU ; Wen LI ; Yupeng REN ; Xiaoyu WANG
Chinese Journal of Biotechnology 2011;27(12):1729-1741
The N-terminal of porcine parvovirus (PPV) viral protein 2 (VP2) links a glycine-rich domain which is a cleavage site of PPV VP3.In order to confirm that the glycine-rich domain was essential for the self-assembling of virus-like particles (VLPs).The VP2 gene with glycine-rich domain deleted and the complete VP2 gene were inserted to eukaryotic expression vector pCI-neo and were named pCI-AVP2 and pCI-VP2. Then, pCI-delta VP2, pCI-VP2 and pCI-neo were transferred into Vero Cells by liposome and the VLPs was detected by SDS-PAGE, Western blotting, indirect immunofluorescence and immunoelectron microscopy. Furthermore, 56 female Kunming mice were divided into 5 groups and injected intramuscularly with pCI-delta VP2, pCI-VP2 and pCI-neo as DNA vaccine, PPV inactivated vaccine and normal saline separately. The peripheral blood of the mice was collected to analyze the subgroups of the peripheral blood mononuclear cell by flow cytometry, to detect the antibody and lymphocyte proliferation by indirect-ELISA and MTT assay separately. The results show that the VLPs were observed both in the pCI-delta VP2 and pCI-VP2 transferred Vero Cells. The two VLPs could agglutinate guinea pig erythrocytes. The results also show that both the pCI-delta VP2 and pCI-VP2 vaccine induced special cellular and humoral immunity effectively. Those results revealed that the glycine-rich domain is not essential for the VPL's self-assembling. This study provides a new theoretical evidence for the relationship between the gene structure and protein function of VP2.
Animals
;
Antigens, Viral
;
genetics
;
metabolism
;
Capsid Proteins
;
genetics
;
metabolism
;
Cercopithecus aethiops
;
Female
;
Genetic Vectors
;
genetics
;
Glycine
;
Mice
;
Sequence Deletion
;
Swine
;
Transfection
;
Vaccination
;
Vaccines, Virus-Like Particle
;
biosynthesis
;
immunology
;
Vero Cells
10.Progess in the development of VLPs vaccine.
Chinese Journal of Virology 2011;27(4):378-382

Result Analysis
Print
Save
E-mail