1.Research progress in vaccines of SARS-CoV-2.
Xinbin GE ; Qigan QU ; Zeguang WANG ; Shungeng ZHANG ; Yan CHI ; Chunhui SHAN ; Ruihan LIU ; Qing ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):946-951
Since the outbreak of corona virus disease 2019 (COVID-19), viral strains have mutated and evolved. Vaccine research is the most direct and effective way to control COVID-19. According to different production mechanisms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines included inactivated virus vaccine, live attenuated vaccine, mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like particle vaccine and protein subunit vaccine. Among them, viral protein subunit vaccine has a wide application prospect due to its high safety and effectiveness. Viral nucleocapsid protein has high immunogenicity and low variability which could be a new direction for vaccine production. We summarized the current development of vaccine research by reviewing the current progress, vaccine safety and vaccine immune efficiency. It is hoped that the proposed possible development strategies could provide a reference for epidemic prevention work in future.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/prevention & control*
;
Protein Subunits
;
Vaccines, DNA
;
Nucleocapsid Proteins
2.Construction of a replicative expression vector based on the porcine circovirus 2 replicon.
Xiaoxue CAI ; Jun LI ; Zhangxun LI ; Hongxu DU ; Liting CAO ; Yue MA
Chinese Journal of Biotechnology 2023;39(7):2634-2643
The antigen gene expression level of a DNA vaccine is the key factor influencing the efficacy of the DNA vaccine. Accordingly, one of the ways to improve the antigen gene expression level of a DNA vaccine is to utilize a plasmid vector that is replicable in eukaryotic cells. A replicative DNA vaccine vector pCMVori was constructed based on the non-replicative pcDNA3.1 and the replicon of porcine circovirus 2 (PCV2) in this study. An EGFP gene was cloned into pCMVori and the control plasmid pcDNA3.1. The two recombinant vectors were transfected into PK-15 cell, and the plasmid DNA and RNA were extracted from the transfected cells. Real-time PCR was used to determine the plasmid replication efficiency of the two plasmids using plasmid before and after Bcl Ⅰ digestion as templates, and the transcription level of the Rep gene in PCV2 replicon was detected by RT-PCR. The average fluorescence intensity of cells transfected with the two plasmids was analyzed with software Image J, and the transcription level of EGFP was determined by means of real-time RT-PCR. The results showed that the replication efficiency of pCMVori in PK-15 cells incubated for 48 h was 136%, and the transcriptions of Rep and Rep' were verified by RT-PCR. The average fluorescence intensity of the cells transfected with pCMVori-EGFP was 39.14% higher than that of pcDNA3.1-EGFP, and the transcription level of EGFP in the former was also 40% higher than that in the latter. In conclusion, the DNA vaccine vector pCMVori constructed in this study can independently replicate in eukaryotic cells. As a result, the expression level of cloned target gene was elevated, providing a basis for developing the pCMVori-based DNA vaccine.
Animals
;
Swine
;
Circovirus/genetics*
;
Vaccines, DNA/genetics*
;
Replicon/genetics*
;
Genetic Vectors/genetics*
;
Plasmids/genetics*
3.Using mouse model to evaluate the immune effect of DNA prime-protein boost strategies targeting Japanese encephalitis virus.
Ruiming YU ; Zhancheng TIAN ; Shandian GAO ; Junzheng DU ; Guiquan GUAN ; Hong YIN
Chinese Journal of Biotechnology 2022;38(8):2902-2911
In order to evaluate the immune effect of the genotype Ⅰ Japanese encephalitis virus prM-E DNA vaccine and the prM-EⅢ fusion protein subunit vaccine on mice using DNA prime-protein boost strategy, the prM-E gene was inserted into the pVAX1 eukaryotic expression vector. The recombinant expression vector prM-E-pVAX1 was constructed as a DNA vaccine for initial immunity, and the recombinant prM-EⅢ fusion protein was obtained using a prokaryotic expression system as a subunit vaccine for enhanced immunity. Thirty two female BALB/c mice aged 4-6 weeks were randomly divided into four groups, and a prM-E-pVAX1 DNA vaccine group, a DNA prime-protein boost immune group, a prM-EⅢ subunit vaccine group, and a pVAX1 vector control group were set up. The specific antibody level in serum was monitored by ELISA, the neutralizing antibody titer was detected by plaque reduction neutralization, and the cellular immune responses induced by different vaccine immune groups were analyzed by cytokine expression abundance and lymphocyte proliferation experiments. The results showed that the neutralizing antibody titers induced by mice immunized with the DNA prime-protein boost strategy were close to that of the group immunized with the single prM-EⅢ subunit vaccine, but significantly higher than that of the group immunized with the single prM-E-pVAX1 DNA vaccine. DNA prime-protein boost strategies induced effective Th1/Th2 immune responses in mouse models, in particular the Th1 cell-mediated immune responses. This study provides a new immune strategy that may facilitate the prevention of Japanese encephalitis.
Animals
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
DNA
;
Disease Models, Animal
;
Encephalitis Virus, Japanese/genetics*
;
Female
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, DNA/genetics*
;
Vaccines, Subunit
4.The effect of maternal HBV DNA levels on HBV intrauterine transmission and fetal distress.
Jing WANG ; Tao Tao YAN ; Ya Li FENG ; Ying Li HE ; Yuan YANG ; Jin Feng LIU ; Nai Juan YAO ; Ya Ge ZHU ; Ying Ren ZHAO ; Tian Yan CHEN
Chinese Journal of Hepatology 2022;30(8):873-878
Aim: To identify the key risk factors of intrauterine hepatitis B virus transmission (HBV) and its effect on the placenta and fetus. Methods: 425 infants born to hepatitis B surface antigen (HBsAg)-positive pregnant women who received combined immunization with hepatitis B immunoglobulin and hepatitis B vaccine between 2009 to 2015 were prospectively enrolled in this study. The intrauterine transmission situation was assessed by dynamic monitoring of infants HBV DNA load and quantitative HBsAg. Univariate and multivariate regression analysis was used to determine the high risk factors for intrauterine transmission. Stratified analysis was used to determine the relationship between maternal HBV DNA load and fetal distress. Transmission electron microscopy was used to observe HBV Effects on placental tissue. Results: HBV intrauterine infection rate was 2.6% (11/425). Multivariate analysis result showed that the maternal HBV DNA load was an independent risk factor for intrauterine infection among infants (P=0.011). Intrauterine infection and distress rate was significantly higher in infants with with maternal HBV DNA>106 IU/ml than those with HBV DNA <106 IU/ml (12.2% vs. 1.8%; χ2=11.275, P=0.006), and (24.4% vs. 16.0%, χ2=3.993, P=0.046). Transmission electron microscopy showed that mitochondrial edema, endoplasmic reticulum expansion and thicker basement membrane were apparent when the maternal HBV DNA>106 IU/ml than that of maternal HBV DNA<106 IU/ml (960 nm vs. 214 nm, Z=-2.782, P=0.005) in the placental tissue. Conclusion: Maternal HBV DNA>106 IU/ml is associated not only with intrauterine infection, but also with increased incidence of intrauterine distress and placental sub-microstructural changes, providing strong clinical and histological evidence for pregnancy avoidance and treatment in this population.
DNA, Viral
;
Female
;
Fetal Distress/drug therapy*
;
Hepatitis B/prevention & control*
;
Hepatitis B Surface Antigens
;
Hepatitis B Vaccines/therapeutic use*
;
Hepatitis B virus/genetics*
;
Humans
;
Immunoglobulins/therapeutic use*
;
Infant
;
Infectious Disease Transmission, Vertical/prevention & control*
;
Placenta
;
Pregnancy
;
Pregnancy Complications, Infectious
5.Enhanced epitope immunoreactivity of the dominant epitope of Toxoplasma gondii fused at the "N terminus" of HPV16L1.
Xiaochun TAN ; Zhongmin LIN ; Jinhui LV ; Zixin XIE ; Xinan CHEN ; Wenshu LI
Chinese Journal of Biotechnology 2021;37(1):290-300
For improving epitope immunogenicity and achieving the co-immunization, late protein 1 (L1) of HPV type 16 (HPV16L1) was selected as the vector to carry the dominant epitope of Toxoplasma gondii because of the shared common population between Toxoplasma gondii and human papillomavirus (HPV). RSepitope-HPV16L1 (RSepitope fused at the "N-terminus" of HPV16L1) and HPV16L1-RSepitope (RSepitope fused at the "C-terminus" of HPV16L1) chimeras were constructed. After transfection of COS-7 cells with the recombinants, Western blot, RT-PCR, and immunofluorescence experiments confirmed that RSepitope-HPV16L1 could successfully express the corresponding mRNA and protein of RSepitope and HPV16L1, but the HPV16L1-RSepitope construct could not. A "prime-boost" immunization program was applied in mice to further evaluate the immune response elicited by the constructs, and the RSepitope-HPV16L1 immunization group produced the most significantly increased humoral and cellular immune responses (the highest RSepitope-specific IgG antibody level and the highest IFN-γ production, respectively), in which both elevated Th1 and Th2 immune responses were obtained. Moreover, the advantage of HPV16L1 as an epitope carrier was remarkable for RSepitope-HPV16L1, which induced a more prominent immunological response than RSepitope alone (without fusion with HPV16L1). Our research indicated that the N-terminus of HPV16L1 could be a better insertion site for enhancing target epitope immunogenicity, and our study offers a design for epitope vaccine of reasonable combination.
Animals
;
Antibody Formation
;
Epitopes
;
Immunization
;
Mice
;
Mice, Inbred BALB C
;
Toxoplasma
;
Vaccination
;
Vaccines, DNA
6.Respiratory Syncytial Virus Fusion Protein-encoding DNA Vaccine Is Less Effective in Conferring Protection against Inflammatory Disease than a Virus-like Particle Platform
Young Man KWON ; Hye Suk HWANG ; Young Tae LEE ; Ki Hye KIM ; Youri LEE ; Min Chul KIM ; Yu Na LEE ; Fu Shi QUAN ; Martin L. MOORE ; Sang Moo KANG
Immune Network 2019;19(3):e18-
Formalin-inactivated respiratory syncytial virus (RSV) vaccination causes vaccine-enhanced disease (VED) after RSV infection. It is considered that vaccine platforms enabling endogenous synthesis of RSV immunogens would induce favorable immune responses than non-replicating subunit vaccines in avoiding VED. Here, we investigated the immunogenicity, protection, and disease in mice after vaccination with RSV fusion protein (F) encoding plasmid DNA (F-DNA) or virus-like particles presenting RSV F (F-VLP). F-DNA vaccination induced CD8 T cells and RSV neutralizing Abs, whereas F-VLP elicited higher levels of IgG2a isotype and neutralizing Abs, and germinal center B cells, contributing to protection by controlling lung viral loads after RSV challenge. However, mice that were immunized with F-DNA displayed weight loss and pulmonary histopathology, and induced F specific CD8 T cell responses and recruitment of monocytes and plasmacytoid dendritic cells into the lungs. These innate immune parameters, RSV disease, and pulmonary histopathology were lower in mice that were immunized with F-VLP after challenge. This study provides important insight into developing effective and safe RSV vaccines.
Animals
;
B-Lymphocytes
;
Dendritic Cells
;
DNA
;
Germinal Center
;
Immunoglobulin G
;
Lung
;
Mice
;
Monocytes
;
Plasmids
;
Respiratory Syncytial Virus Vaccines
;
Respiratory Syncytial Viruses
;
T-Lymphocytes
;
Vaccination
;
Vaccines, Subunit
;
Viral Load
;
Weight Loss
7.Rapid Whole-genome Sequencing of Zika Viruses using Direct RNA Sequencing
Jung Heon KIM ; Jiyeon KIM ; Bon Sang KOO ; Hanseul OH ; Jung Joo HONG ; Eung Soo HWANG
Journal of Bacteriology and Virology 2019;49(3):115-123
Zika virus (ZIKV) is one of the pathogens which is transmitted world widely, but there are no effective drugs and vaccines. Whole genome sequencing (WGS) of viruses could be applied to viral pathogen characterization, diagnosis, molecular surveillance, and even finding novel pathogens. We established an improved method using direct RNA sequencing with Nanopore technology to obtain WGS of ZIKV, after adding poly (A) tails to viral RNA. This established method does not require specific primers, complimentary DNA (cDNA) synthesis, and polymerase chain reaction (PCR)-based enrichment, resulting in the reduction of biases as well as of the ability to find novel RNA viruses. Nanopore technology also allows to read long sequences. It makes WGS easier and faster with long-read assembly. In this study, we obtained WGS of two strains of ZIKV following the established protocol. The sequenced reads resulted in 99% and 100% genome coverage with 63.5X and 21,136X, for the ZIKV PRVABC59 and MR 766 strains, respectively. The sequence identities of the ZIKV PRVABC59 and MR 766 strains for each reference genomes were 98.76% and 99.72%, respectively. We also found that the maximum length of reads was 10,311 bp which is almost the whole genome size of ZIKV. These long-reads could make overall structure of whole genome easily, and WGS faster and easier. The protocol in this study could provide rapid and efficient WGS that could be applied to study the biology of RNA viruses including identification, characterization, and global surveillance.
Bias (Epidemiology)
;
Biology
;
Diagnosis
;
DNA
;
Genome
;
Genome Size
;
Methods
;
Nanopores
;
Polymerase Chain Reaction
;
RNA Viruses
;
RNA
;
RNA, Viral
;
Sequence Analysis, RNA
;
Tail
;
Vaccines
;
Zika Virus
8.Cholera: an overview with reference to the Yemen epidemic.
Frontiers of Medicine 2019;13(2):213-228
Cholera is a secretory diarrhoeal disease caused by infection with Vibrio cholerae, primarily the V. cholerae O1 El Tor biotype. There are approximately 2.9 million cases in 69 endemic countries annually, resulting in 95 000 deaths. Cholera is associated with poor infrastructure and lack of access to sanitation and clean drinking water. The current cholera epidemic in Yemen, linked to spread of V. cholerae O1 (Ogawa serotype), is associated with the ongoing war. This has devastated infrastructure and health services. The World Health Organization had estimated that 172 286 suspected cases arose between 27th April and 19th June 2017, including 1170 deaths. While there are three oral cholera vaccines prequalified by the World Health Organization, there are issues surrounding vaccination campaigns in conflict situations, exacerbated by external factors such as a global vaccine shortage. Major movements of people complicates surveillance and administration of double doses of vaccines. Cholera therapy mainly depends on rehydration, with use of antibiotics in more severe infections. Concerns have arisen about the rise of antibiotic resistance in cholera, due to mobile genetic elements. In this review, we give an overview of cholera epidemiology, virulence, antibiotic resistance, therapy and vaccines, in the light of the ongoing epidemic in Yemen.
Anti-Bacterial Agents
;
therapeutic use
;
Cholera
;
drug therapy
;
prevention & control
;
Cholera Vaccines
;
therapeutic use
;
DNA, Bacterial
;
genetics
;
Disease Outbreaks
;
Drug Resistance, Multiple, Bacterial
;
Humans
;
Microbial Sensitivity Tests
;
Polymerase Chain Reaction
;
Vibrio cholerae
;
drug effects
;
isolation & purification
;
Virulence Factors
;
genetics
;
Yemen
9.Application of lysis system in bacterial vector vaccines.
Yibo TANG ; Qing LIU ; Pei LI ; Hongyan LUO ; Qingke KONG
Chinese Journal of Biotechnology 2019;35(3):375-388
Recombinant bacterial vector vaccines have been widely used as carriers for the delivery of protective antigens and nucleic acid vaccines to prevent certain infectious diseases because of their ability to induce mucosal immunity, humoral immunity and cellular immunity. However, protective antigens and nucleic acids recombined into bacterial vector vaccines are difficult to be released into host cells because of the presence of bacterial cell wall. Vaccine strains that are residual in animals or livestock products may also cause environmental contamination and spread of the vaccine strains. The effective solution for these problems is to construct an auto-lysis system that can regulate the vaccine strains to grow normally in vitro while lysis in vivo. The lysis systems that have been applied in germs mainly include: the lysis system based on regulated delayed peptidoglycan synthesis, the lysis system based on the regulation of bacteriophage lysis protein and the lysis system based on the toxin-antitoxin system. In addition, a potential lysis system based on bacterial Type Ⅵ Secretion System (T6SS) is also expected to be a new method for the construction of auto-lysis strains. This review will focus on the regulatory mechanisms of these bacterial lysis systems.
Animals
;
Antigens, Bacterial
;
Bacterial Vaccines
;
Vaccines, Attenuated
;
Vaccines, DNA
10.Rhoptry antigens as Toxoplasma gondii vaccine target.
Masoud FOROUTAN ; Fatemeh GHAFFARIFAR ; Zohreh SHARIFI ; Abdolhosein DALIMI ; Ogholniaz JORJANI
Clinical and Experimental Vaccine Research 2019;8(1):4-26
Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
Animals
;
Antigens, Surface
;
Apicomplexa
;
Cell Size
;
Epitopes
;
Humans
;
Immunization
;
Life Cycle Stages
;
Mice
;
Molecular Biology
;
Mothers
;
Parasites
;
Prognosis
;
Toxoplasma*
;
Toxoplasmosis
;
Vaccines
;
Vaccines, DNA
;
Vaccines, Synthetic
;
Zoonoses

Result Analysis
Print
Save
E-mail