1.Single-cell analysis identifies PI3+S100A7+keratinocytes in early cervical squamous cell carcinoma with HPV infection.
Peiwen FAN ; Danning DONG ; Yaning FENG ; Xiaonan ZHU ; Ruozheng WANG
Chinese Medical Journal 2025;138(20):2615-2630
BACKGROUND:
Cervical squamous cell carcinoma (CESC), the most common subtype of cervical cancer, is primarily caused by the high-risk human papillomavirus (HPV) infection and genetic susceptibility. Single-cell RNA sequencing (scRNA-seq) has been widely used in CESC research to uncover the diversity of cell types and states within tumor tissues, enabling a detailed study of the tumor microenvironment (TME). This technology allows precise mapping of HPV infection in cervical tissues, providing valuable insights into the initiation and progression of HPV-mediated malignant transformation.
METHODS:
We performed the scRNA-seq to characterize gene expression in tumor tissues and paired adjacent para-cancerous tissues from four patients with early-stage CESC using the 10× Genomics platform. The HPV infection and its subtypes were identified using the scRNA data and viral sequence mapping, and trajectory analyses were performed using HPV+ or HPV- cells. Interactions between different types of keratinized cells and their interactions with other cell types were identified, and pathways and specificity markers were screened for proliferating keratinized cells. The Cancer Genome Atlas (TCGA) dataset was used to verify the prognostic correlation between tumor-specific PI3+S100A7+ keratinocyte infiltration and CESC, and the localization relationship between PI3+S100A7+ keratinocytes and macrophages was verified by immunofluorescence staining.
RESULTS:
Various types of keratinocytes and fibroblasts were the two cell types with the most significant differences in percentage between the tumor tissue samples and paired adjacent non-cancerous tissue samples in the early stages of CESC. We found that PI3+S100A7+ keratinocytes were associated with early HPV-positive CESC, and PI3+S100A7+ keratinocytes were more abundant in tumors than in adjacent normal tissues in the TCGA-CESC dataset. Analysis of clinical information revealed that the infiltration of PI3+S100A7+ keratinocytes was notably higher in tumors with poor prognosis than in those with good prognosis. Additionally, multiplex immunofluorescence analysis showed a specific increase in PI3+S100A7+ expression within tumor tissues, with PI3+S100A7+ keratinocytes and CD163+ macrophages being spatially very close to each other. In the analysis of cell-cell interactions, macrophages exhibited strong crosstalk with PI3+S100A7+ proliferating keratinocytes in HPV-positive CESC tumors, mediated by tumor necrosis factor (TNF), CCL2, CXCL8, and IL10, highlighting the dynamic and tumor-specific enhancement of macrophage-keratinocyte interactions, which are associated with poor prognosis and immune modulation. Using CIBERSORTx, we discovered that patients with high infiltration of both PI3+S100A7+ proliferating keratinocytes and macrophages had the shortest overall survival. In the analysis of cell-cell interactions, PI3+S100A7+ proliferating keratinocytes and macrophages were found to be involved in highly active pathways that promote differentiation and structure formation, including cytokine receptor interactions, the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, and TNF signaling pathway regulation. Further subtyping of fibroblast populations identified four subtypes. The C1 group, characterized by its predominance in tumor tissues, is a subtype enriched with cancer-associated fibroblasts (CAFs), whereas the C3 group is primarily enriched in adjacent non-cancerous tissues and consists of undifferentiated cells. Moreover, the distinct molecular and cellular differences between HPV16- and HPV66-associated tumors were demonstrated, emphasizing the unique tumor-promoting mechanisms and microenvironmental influences driven by each HPV subtype.
CONCLUSIONS
We discovered a heterogeneous population of keratinocytes between tumor and adjacent non-cancerous tissues caused by HPV infection and identified macrophages and specific CAFs that play a crucial role during the early stage in promoting the inflammatory response and remodeling the cancer-promoting TME. Our findings provide new insights into the transcriptional landscape of early-stage CESC to understand the mechanism of HPV-mediated malignant transformation in cervical cancer.
Humans
;
Female
;
Papillomavirus Infections/genetics*
;
Uterine Cervical Neoplasms/genetics*
;
Carcinoma, Squamous Cell/pathology*
;
Keratinocytes/metabolism*
;
Single-Cell Analysis/methods*
;
Tumor Microenvironment/genetics*
4.Atypical placental site nodules: Five cases and literature review.
Yifu HE ; Wenqing YANG ; Yu ZHANG
Journal of Central South University(Medical Sciences) 2025;50(1):99-104
Atypical placental site nodules (APSN) are a rare form of trophoblastic disease in pregnancy. There is limited research on APSN, and treatment methods are controversial, with unclear prognosis. This study collected clinical and prognostic data of 5 patients diagnosed with APSN at Xiangya Hospital of Central South University from June 2008 to June 2023, aiming to provide a better understanding of the prognosis of APSN patients and offer scientific evidence for clinical treatment. The average age of the 5 APSN patients was 32.60 years, and all patients underwent dilation and curettage or hysteroscopic surgery or hysteroscopic surgery without hysterectomy. Except for one patient who was lost to follow-up after 30 days, the remaining 4 patients were followed up for 1.36 to 4.61 years. During the follow-up, gynecological ultrasound did not show abnormalities, and serum human chorionic gonadotropin (HCG) tests were negative, with no evidence of malignancy. A search of both English and Chinese databases yielded 8 articles reporting the diagnosis, treatment, and follow-up outcomes of APSN, with 37 cases cumulatively followed up. Among them, 2 (5.41%) cases developed epithelial trophoblastic tumors or placental site trophoblastic tumors during follow-up, but there is insufficient evidence to determine whether these tumors directly originated from APSN or were secondary to APSN. Currently, there is no direct evidence suggesting that APSN has the potential for malignant transformation. Patients with APSN who have completed their childbearing may consider preserving their uterus, but close follow-up is needed to further evaluate the prognosis.
Humans
;
Female
;
Pregnancy
;
Adult
;
Trophoblastic Tumor, Placental Site/pathology*
;
Uterine Neoplasms/diagnosis*
;
Prognosis
;
Dilatation and Curettage
;
Chorionic Gonadotropin/blood*
5.Therapeutic mechanism of hederagenin, an active component in Guizhi Fuling Pellets, against cervical cancer in nude mice.
Yinfu ZHU ; Yiran LI ; Yi WANG ; Yinger HUANG ; Kunxiang GONG ; Wenbo HAO ; Lingling SUN
Journal of Southern Medical University 2025;45(7):1423-1433
OBJECTIVES:
To explore the therapeutic mechanism of Guizhi Fuling (GZFL) Pellets against cervical cancer.
METHODS:
Publicly available databases were used to identify the targets of GZFL Pellets and cervical cancer to construct the protein-protein interaction (PPI) network, followed by GO biological process and KEGG pathway enrichment analysis of the hub genes. The "Traditional Chinese Medicine-Active Ingredients-Targets-Pathways" network for GZFL Pellets in cervical cancer treatment was generated using Cytoscape v10.0.0, and molecular docking of the drug and potential targets was performed to predict the specific targets of active components in Guizhi Fuling Pellets. The inhibitory effects of hederagenin, an active ingredient in GZFL Pellets, was tested in cultured cervical cancer cells and in nude mice bearing cervical cancer xenografts.
RESULTS:
GZFL Pellets contain 338 active components targeting 247 action sites. A total of 10127 cervical cancer-related targets were obtained, and among them 195 were identified as potential therapeutic targets of GZFL Pellets for cervical cancer treatment, including the key targets of GABRA1, PTK2, JAK2, HTR3A, GSR, and IL-17. Molecular docking study showed low binding energies of the active components such as hederagenin, campesterol, and stigmasterol for protein-molecule interaction. GO enrichment analysis suggested that GZFL Pellets inhibited cervical cancer primarily by regulating responses to steroid hormones, oxidative stress, and lipopolysaccharides. Among the active components of GZFL Pellets, hederagenin was found to inhibit cervical cancer cells in vitro and significantly reduced STAT3 phosphorylation level in the cancer cells. In nude mice bearing cervical cancer xenografts, hederagenin effectively inhibited tumor growth rate without causing obvious adverse effects.
CONCLUSIONS
GZFL Pellets inhibit cervical cancer cell growth through its multiple active components that target different pathways. Among these components, hederagenin inhibits tumor cell growth possibly by directly binding to JAK2 protein to inhibit STAT3 phosphorylation.
Female
;
Animals
;
Uterine Cervical Neoplasms/pathology*
;
Mice, Nude
;
Humans
;
Mice
;
Oleanolic Acid/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
;
Molecular Docking Simulation
;
Xenograft Model Antitumor Assays
;
Cell Line, Tumor
;
STAT3 Transcription Factor/metabolism*
;
Protein Interaction Maps
;
Janus Kinase 2/metabolism*
6.Oncolytic virus-mediated base editing for targeted killing of cervical cancer cells.
Huanhuan XU ; Siwei LI ; Xi LUO ; Zuping ZHOU ; Changhao BI
Chinese Journal of Biotechnology 2025;41(4):1382-1394
Conventional cancer therapies, such as radiotherapy and chemotherapy, often damage normal cells and may induce new tumors. Oncolytic viruses (OVs) selectively target tumor cells while sparing normal cells. Most OVs used in clinical trials have been genetically engineered to enhance their ability to target tumor cells and activate immune responses. To develop a specific OV-based approach for treating cervical cancer, this study constructed an oncolytic adenovirus that delivered a base editor targeting oncogenes to achieve efficient killing of tumor cells through inhibiting tumor growth and directly lysing tumor cells. We utilized the human telomerase reverse transcriptase (TERT) promoter to drive the expression of adenovirus early region 1A (E1A) and successfully constructed the P-hTERT-E1A-GFP vector, which was validated for its activity in cervical cancer cells. Given the critical role of the MYC oncogene in the research of oncology, identifying efficient editing sites for the MYC oncogene is a key step in this study.Three MYC-targeting gRNAs were engineered and co-delivered with ABE8e base editor plasmids into HEK293T cells. Following puromycin selection, Sanger sequencing demonstrated differential editing efficiencies: MYC-1 (43%), MYC-2 (25%), and MYC-3 (35%), identifying MYC-1 as the most efficient editing locus. By constructing the P-ABEs-hTERT-E1A-GFP and P-MYC gRNA-hTERT-E1A-GFP vectors, we successfully packaged the virus and confirmed its specificity and efficacy. The experimental results demonstrate that this novel oncolytic adenovirus effectively inhibits the growth of HeLa cells in vitro, providing new experimental evidence and potential strategies for treating cervical cancer based on the HeLa cell model.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Oncolytic Viruses/genetics*
;
Female
;
HEK293 Cells
;
Oncolytic Virotherapy/methods*
;
Adenoviridae/genetics*
;
Gene Editing/methods*
;
Telomerase/genetics*
;
Adenovirus E1A Proteins/genetics*
;
Genetic Vectors/genetics*
;
HeLa Cells
8.The role of tumor-associated macrophages in the development and progression of cervical cancer.
Siyi MAO ; Zheng FANG ; Yiming XU ; Kun YANG ; Shuya YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):1029-1034
Cervical cancer (CC) has been a hot topic in the field of gynecological cancer due to its high morbidity and mortality. As one of the major components, tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), differentiating into M1 and M2 phenotypes under the influence of various cytokines, with a predominance of the M2 phenotype among TAMs. Notably, the functions of these two phenotypes are almost opposite. M1 macrophages promote inflammation and inhibit tumor development, while M2 macrophages tend to suppress the immune response and promote tumor growth. Additionally, TAMs can influence tumor invasion, metastasis and immune regulation through interacting with various lymphocytes and cytokines. Numerous studies have demonstrated that TAMs can be used as prognostic markers for CC, and as therapeutic targets in clinical setting. A deeper comprehension of interactions between TAMs and CC, achieved by integrating findings and conclusions from various studies, is conducive to the discovery of new directions for research and new perspectives for clinical treatment.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Female
;
Tumor-Associated Macrophages/metabolism*
;
Tumor Microenvironment/immunology*
;
Disease Progression
;
Cytokines/immunology*
;
Animals
;
Macrophages/immunology*
9.Clinicopathological features and prognostic factors of patients with lung metastasis of stage Ⅰa~Ⅲb cervical cancer.
Hong LIU ; Guo Nan ZHANG ; Min LUO ; Xu Dong ZHANG ; Ying FAN ; Chun Rong PENG
Chinese Journal of Oncology 2023;45(4):340-347
Objective: To investigate the clinicopathological features and prognostic factors of lung metastasis in patients with cervical cancer after treatment. Methods: The clinicopathological data of 191 patients with lung metastasis of stage Ⅰa-Ⅲb cervical cancer (FIGO 2009 stage) treated in Sichuan Cancer Hospital from January 2007 to December 2020 were analyzed retrospectively. Kaplan Meier method and Log rank test were used for survival analysis, and Cox regression model was used for prognostic factors analysis. Results: Among 191 patients with lung metastasis of cervical cancer, pulmonary metastasis was found in 134 patients (70.2%) during follow-up examination, and 57 patients (29.8%) had clinical symptoms (cough, chest pain, shortness of breath, hemoptysis, and fever). The time from the initial treatment of cervical cancer to the discovery of lung metastasis was 1-144 months in the whole group, with a median time of 19 months. Univariate analysis of the prognosis of lung metastasis after treatment of cervical cancer showed that the diameter of cervical tumor, lymph node metastasis, positive surgical margin, disease-free interval after treatment of cervical cancer, whether it is accompanied by other metastasis, the number, location and maximum diameter of lung metastasis, and the treatment method after lung metastasis are related to the prognosis of patients with lung metastasis of cervical cancer. Multivariate analysis showed that the number of lung metastases and other site metastases in addition to lung metastases were independent factors affecting the prognosis of patients with lung metastases of cervical cancer (P<0.05). Conclusions: For patients with cervical cancer, attention should be paid to chest CT examination during follow-up to guard against the possibility of lung metastasis after treatment. Besides lung metastasis, other site metastasis and the number of lung metastasis are independent factors affecting the prognosis of patients with lung metastasis of cervical cancer. For patients with lung metastasis after treatment of cervical cancer, surgical treatment is an effective treatment. It is necessary to strictly grasp the surgical indications, and some patients can achieve long-term survival. For patients with lung metastasis of cervical cancer who are not suitable for resection of lung metastasis, the remedial treatment of chemotherapy with or without radiotherapy is still a recommended choice.
Female
;
Humans
;
Prognosis
;
Uterine Cervical Neoplasms/pathology*
;
Neoplasm Staging
;
Retrospective Studies
;
Lung Neoplasms/pathology*
;
Survival Rate
10.The mechanism of S100A7 inducing the migration and invasion in cervical cancer cells.
Tian TIAN ; Zhen HUA ; Yan KONG ; Ling Zhi WANG ; Xiang Yu LIU ; Yi HAN ; Xue Min ZHOU ; Zhu Mei CUI
Chinese Journal of Oncology 2023;45(5):375-381
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Female
;
Humans
;
Uterine Cervical Neoplasms/pathology*
;
HeLa Cells
;
Fibronectins/metabolism*
;
Culture Media, Conditioned
;
Carcinoma, Squamous Cell/metabolism*
;
Adenocarcinoma
;
Cadherins/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
S100 Calcium Binding Protein A7/metabolism*

Result Analysis
Print
Save
E-mail