1.Structural identification for in vivo metabolites of proanthocyanidin B_2.
Wen-Hui ZHAO ; Hui-Ting TANG ; Jun LI ; Yue-Lin SONG ; Ke ZHANG ; Yun-Fang ZHAO
China Journal of Chinese Materia Medica 2025;50(10):2841-2852
Proanthocyanidin B_2(PAC-B_2), a polyphenolic dimeric compound comprising two epicatechin molecules linked by a C-C bond, is extensively found in traditional Chinese medicines, with anti-tumor and anti-oxidant activities. Given the limited bioavailability, a thorough investigation and comprehensive understanding of PAC-B_2 metabolism in vivo are essential for elucidating therapeutic forms and mechanisms. In the present study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) in the negative ion mode was employed to acquire the MS/MS information of PAC-B_2 and metabolites in urine and feces samples of the rats administrated with PAC-B_2. Online energy-resolved MS(ER-MS) was applied as supplementary to obtain the full collision energy ramp-MS~2 spectra(FCER-MS~2) of isomers-of-interest, which implied comprehensive MS~2 information of targeted compounds. Finally, the possible metabolic pathways of PAC-B_2 in rats were proposed. The primary fragmentation behaviors of PAC-B_2 in the negative ion mode included quinone methide fission between C_4-C_8 bond, retro Diels-Alder cracking of F-ring, heterocyclic ring fission of C-ring, and neutral loss of small molecules such as H_2O. A total of 25 metabolites were tentatively elucidated in urine and feces samples of rats administrated with PAC-B_2 by fragmentation pattern and reported literature. Two groups of isomers, M3/M4/M5 and M9/M11, were confirmatively differentiated based on the relationships between optimal collision energy provided by FCER-MS~2 and bond properties, including bond length and bond dissociation energy. In addition to the ring-opening and methylation, PAC-B_2 could also be metabolized into epicatechin and low molecular weight phenolic acids, which were subsequently subjected to dehydroxylation, ring-opening, methylation, sulfation, and glucuronidation. The structural information provided by online ER-MS and FCER-MS~2 enabled the differentiation of isomers and improved the identification confidence. More importantly, the present study deeply analyzes the in vivo metabolic pathways of PAC-B_2, providing a basis for the research on the pharmacological mechanism of this compound.
Animals
;
Proanthocyanidins/urine*
;
Rats
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Feces/chemistry*
;
Molecular Structure
2.Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract.
Feng HE ; Yang ZHOU ; Yue PENG ; Lin ZHENG ; Ling WANG ; Yong HUANG ; Ming-Yan CHI
China Journal of Chinese Materia Medica 2024;49(23):6500-6511
This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected. Ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was used to analyze the prototype components and metabolites of the drugs in liver microsomes of each group. Another 12 SD rats were also divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. The rats were administrated with 4.2 mL·kg~(-1) Shuganning Injection or Scutellariae Radix extract by tail vein injection. After 48 h, the rat urine, feces, and bile were collected, and UPLC-Q-Exactive Orbitrap-MS was used to analyze the prototype components and metabolites in each biological sample. The results showed that 5 prototype components and 8 metabolites of Shuganning Injection and Scutellariae Radix extract were identified in liver microsomes. A total of 5 prototype components were identified in rat urine, feces, and bile separately. Fifteen metabolites were identified in the urine, 9 metabolites in the feces, and 12 metabolites in the bile. The differences of metabolic pathways and number of metabolites of baicalin were compared between Shuganning Injection and Scutellariae Radix extract. For both Shuganning Injection and Scutellariae Radix extract, the metabolites of baicalin or baicalein in rat liver microsomes, urine, bile, and feces were mainly formed glucuronic acid conjugates, and there were a small amount of glucose conjugates and methylation products. Differences were found in the number and types of metabolites of baicalin in urine samples between Shuganning Injection and Scutellariae Radix extract, indicating that differences existed in metabolism between the two. This suggests that the other components in the formula lead to changes of metabolites in vivo.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Microsomes, Liver/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Feces/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Male
;
Bile/chemistry*
;
Flavonoids/metabolism*
;
Urine/chemistry*
;
Chromatography, High Pressure Liquid
;
Mass Spectrometry
;
Plant Extracts
3.The risk prediction value of paraquat poisoning dose, urine protein and myocardial enzymes.
Yi Wei SU ; Yi Min LIU ; Jin Wei ZHANG ; Li Ping ZHOU ; Wei Jia DU ; Zhi WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):8-13
Objective: To explore the value of paraquat (PQ) intake, urine protein and myocardial enzyme indexes in judging the prognosis of patients with acute PQ poisoning. Methods: From September to December 2021, all 201 patients with acute PQ poisoning admitted to Guangzhou Twelfth People's Hospital from January 2010 to December 2019 were selected as the research objects. Based on follow-up results 60 days after poisoning, the research objects were divided into survival group (n=78) and death group (n=123) . The differences in information about poisoning, treatment plan, PQ intake, urine protein, creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase between the two groups of patients were compared and analyzed. Logistic regression and Cox regression were used to analyze the correlation between poisoning outcome and PQ intake, urine protein and myocardial enzymes. ROC curve and principal component analysis were used to explore high-efficiency indicators for predicting the outcome of acute PQ poisoning. Results: The PQ intake[50 (20, 100) ml], urine protein (total rank 15570.50) , creatine kinase[ (336.36±261.96) U/L], creatine kinase isoenzyme[ (43.91±43.74) U/L], lactate dehydrogenase [ (346.01±196.50) U/L], α-hydroxybutyrate dehydrogenase content[ (271.23±11.92) U/L] of patients in the death group were all higher than the survival group[15 (10, 20) ml, 4730.50, (187.78±178.06) U/L, (18.88±15.50) U/L, (190.92±60.50) U/L, (152.60±48.34) U/L, respectively] (P<0.05) . The outcome of acute PQ poisoning was positively correlated with PQ intake, urine protein, creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase (P<0.05) . Multivariate logistic regression and multivariate Cox regression analysis showed that creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase and α-hydroxybutyrate dehydrogenase was positively correlated with the prognosis of patients with acute PQ poisoning (P<0.05) . ROC curve analysis and principal component analysis showed that the combined indexes of PQ intake, urine protein and myocardial enzymes had the highest efficacy and weight in judging the prognosis of patients (AUC=0.91, weight coefficient=0.19, sensitivity=0.76, specificity=0.89) . When the combined score was ≥4, the probability of accurately predicting the death of patients was as high as 91% (positive predictive value=0.91) . Conclusion: PQ intake, urine protein combined with creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase has high value in predicting the prognosis of patients with acute PQ poisoning.
Humans
;
Creatine
;
Creatine Kinase
;
Isoenzymes
;
Lactate Dehydrogenases
;
Paraquat/poisoning*
;
Prognosis
;
Retrospective Studies
;
Myocardium/enzymology*
;
Urine/chemistry*
5.UPLC-Q-TOF-MS/MS analysis on prototypes components and metabolites of effective fractions of Polygonum orientale flower in rat serum and urine.
Si-Ying CHEN ; Tao XIA ; Lin ZHENG ; Yue-Ting LI ; Zi-Peng GONG ; Yong HUANG ; Yong-Jun LI ; Ping ZHAO
China Journal of Chinese Materia Medica 2019;44(10):2156-2162
Ultra performance liquid chromatography coupled with time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS) method was applied to analyze the prototypes and metabolites of the effective components of Polygonum orientale in SD rat serum and urine. The separation was performed on Agilent Eclipse Plus C_(18) column( 2. 1 mm×100 mm,1. 8 μm),with 0. 1% formic acid solution( A)-acetonitrile( B) as the mobile phase for gradient elution. Mass spectrometry data of biological samples were obtained under positive and negative electrospray ion mode. By comparing chromatogram differences between blank samples and drug treatment samples,prototype components and metabolites of the effective components of P. orientale extract were identified. The results showed that 12 metabolites were detected in serum and 26 metabolites in urine( including cross-components) of rats. The main metabolic pathways included hydrogenation,hydroxylation,glucuronidation,sulfation reaction,and methylation-glucuronidation,etc. The method established in this study was reliable and effective for studying the metabolic characteristics of the effective components of P. orientale in rats,and it can provide a reference for further studies on therapeutic material basis of this herb.
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
pharmacokinetics
;
Flowers
;
chemistry
;
Phytochemicals
;
blood
;
urine
;
Polygonum
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
6.Correlations of water iodine concentration to earlier goitre frequency in Sweden-an iodine sufficient country with long-term iodination of table salt.
Sofia MANOUSOU ; Maja STÅL ; Robert EGGERTSEN ; Michael HOPPE ; Lena HULTHÉN ; Helena FILIPSSON NYSTRÖM
Environmental Health and Preventive Medicine 2019;24(1):73-73
BACKGROUND:
Before iodination of Swedish table salt in 1936, iodine deficiency resulting in goitre and hypothyroidism was common. Sweden has become iodine sufficient, as shown in a national survey in 2007, proving its iodination fortification programme effective for the general population. The objective of this study was to collect drinking water from water treatment plants nationally and test if water iodine concentration (WIC) correlated to urinary iodine concentration (UIC) of school-aged children in a national survey 2007 to former goitre frequency in 1929 and to thyroid volume data in 2007.
METHODS:
In 2012, 166 treatment plants, located in 57% (166 of 290) of all Swedish municipalities, were asked to collect drinking water samples of approximately 10 ml. In 2007, tap water samples of the same volume were collected from 30 randomly selected schools for the national survey. Analysis of WIC was done in both treatment plants in 2012 (n = 166) and tap water in 2007 (n = 30). The correlation of WIC to the children's UIC and thyroid volume after iodination was tested based on data from the national survey in 2007. The association of WIC to former goitre frequency was tested based on pre-iodination data, derived from a map of goitre frequency drawn in 1929.
RESULTS:
The median WIC from water treatment plants was 4.0 μg/L (range 0-27 μg/L). WIC was similar in coastal and inland areas, for both ground and surface water. WIC correlated with historical goitre areas and was lower in the goitre areas than in non-goitre areas (p < 0.001). WIC in the same municipalities as the schools correlated with the UIC of children (p < 0.01), but not with their thyroid volume.
CONCLUSIONS
WIC still contributes to iodine nutrition in Sweden, but iodination overrides the goitre effect.
Adolescent
;
Child
;
Drinking Water
;
chemistry
;
Female
;
Food, Fortified
;
analysis
;
Goiter
;
epidemiology
;
history
;
History, 20th Century
;
History, 21st Century
;
Humans
;
Iodine
;
analysis
;
urine
;
Male
;
Sodium Chloride, Dietary
;
analysis
;
Sweden
;
epidemiology
;
Thyroid Gland
;
anatomy & histology
7.Anti-inflammatory and Antimicrobial Effects of Anthocyanin Extracted from Black Soybean on Chronic Bacterial Prostatitis Rat Model.
Byung Il YOON ; Woong Jin BAE ; Yong Sun CHOI ; Su Jin KIM ; U Syn HA ; Sung-Hoo HONG ; Dong Wan SOHN ; Sae Woong KIM
Chinese journal of integrative medicine 2018;24(8):621-626
OBJECTIVETo investigated the anti-inflammatory and antimicrobial effects of anthocyanins extracted from black soybean on the chronic bacterial prostatitis (CBP) rat model.
METHODSThe Sprague-Dawley rats were divided into 4 groups, including control, ciprofloxacin, anthocyanins and anthocyanins with ciprofloxacin groups (n=8 in each group). Then, drip infusion of bacterial suspension (Escherichia coli Z17 O:K:H) into Sprague-Dawley rats was conducted to induce CBP. In 4 weeks, results of prostate tissue, urine culture, and histological analysis on the prostate were analyzed for each group.
RESULTSThe use of ciprofloxacin, anthocyanins, and anthocyanins with ciprofloxacin showed statistically significant decreases in bacterial growth and improvements in the reduction of prostatic inflammation compared with the control group (P<0.05). The anthocyanins with ciprofloxacin group showed a statistically significant decrease in bacterial growth and improvement in prostatic inflammation compared with the ciprofloxacin group (P<0.05).
CONCLUSIONSThese results suggest that anthocyanins may have anti-inflammatory and antimicrobial effects, as well as a synergistic effect with ciprofloxacin. Therefore, we suggest that the combination of anthocyanins and ciprofloxacin may be effective in treating CBP to obtain a higher rate of treatment success.
Acinar Cells ; drug effects ; pathology ; Animals ; Anthocyanins ; isolation & purification ; pharmacology ; therapeutic use ; Anti-Infective Agents ; pharmacology ; therapeutic use ; Anti-Inflammatory Agents ; pharmacology ; therapeutic use ; Chronic Disease ; Disease Models, Animal ; Escherichia coli Infections ; drug therapy ; urine ; Fibrosis ; Inflammation ; pathology ; Male ; Plant Extracts ; pharmacology ; therapeutic use ; Prostate ; drug effects ; microbiology ; pathology ; Prostatitis ; drug therapy ; microbiology ; urine ; Rats, Sprague-Dawley ; Severity of Illness Index ; Soybeans ; chemistry ; Urine ; microbiology
8.Identification of metabolites of Chenxiang Huaqi pill in rats based on UPLC-Q-TOF-MS.
Xuan-Xuan PAN ; Fen-Yun SONG ; Xiu-Lian LIN ; Hua LI
China Journal of Chinese Materia Medica 2018;43(3):527-531
To analyze the metabolites of Chenxiang Huaqi pill in rats by using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). The separation was performed on Phenomenex Kinetex C₁₈ column, with the acetonitrile -0.1% formic acid as the mobile phase for gradient elution at a flow rate of 0.8 mL·min⁻¹. The data were collected by the positive ion mode of ESI source. The plasma and urine total ion chromatograms of the rats in blank group and treatment group were used to analyze the targeted ion chromatograms. The results showed that 24 compounds were detected in the plasma and urine, including 5 prototype components and 19 metabolites. The major metabolic pathways included hydration, glucuronidation, demethylation, hydrolysis, hydroxylation and sulfation. The method was rapid, simple and sensitive, and can be used to rapidly identify the metabolites of Chenxiang Huaqi pill that can be absorbed in rats, providing a reference for the study of the absorption and metabolism mechanism of Chenxiang Huaqi pill .
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
metabolism
;
Plasma
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Urine
;
chemistry
9.Identification of poliumoside metabolites in rat plasma, urine, bile, and intestinal bacteria with UPLC/Q-TOF-MS.
Hao QIAN ; Fang-Jun YU ; Dan-Yi LU ; Bao-Jian WU ; Xing-Wang ZHANG ; Huan WANG ; Zhi-Guo MA
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):871-880
Poliumoside is representative of phenylethanoid glycosides, which are widely found in many plants. Poliumoside is also regarded as the main active component of Callicarpa kwangtungensis Chun (CK), though its oral bioavailability in rat is extremely low (0.69%) and its in vivo and in vitro metabolism has not yet been systematically investigated. In the present study, an ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method was employed to identify the metabolites and investigate the metabolic pathways of poliumoside in rat after oral administration 1.5 g·kg of poliumoside. As a result, a total of 34 metabolites (30 from urine, 17 from plasma, and 4 from bile) and 9 possible metabolic pathways (rearrangment, reduction, hydration, hydrolyzation, dehydration, methylation, hydroxylation, acetylation, and sulfation) were proposed in vivo. The main metabolite, acteoside, was quantified after incubated with rat intestinal bacteria in vitro. In conclusion, the present study systematically explored the metabolites of poliumoside in vivo and in vitro, proposing metabolic pathways that may be significant for further metabolic studies of poliumoside.
Administration, Oral
;
Animals
;
Bacteria
;
metabolism
;
Bile
;
chemistry
;
Caffeic Acids
;
administration & dosage
;
blood
;
chemistry
;
urine
;
Callicarpa
;
chemistry
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
metabolism
;
Glycosides
;
administration & dosage
;
blood
;
chemistry
;
urine
;
Intestines
;
microbiology
;
Male
;
Mass Spectrometry
;
methods
;
Molecular Structure
;
Plasma
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Urine
;
chemistry
10.Taxus chinensis ameliorates diabetic nephropathy through down-regulating TGF-β1/Smad pathway.
Hong-Bo WENG ; Wen-Ke HAN ; Yan-Wen XIONG ; Zhou-Hui JIN ; Zhen LAN ; Cheng LIU ; Xue-Mei ZHANG ; Wen PENG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(2):90-96
Diabetic nephropathy (DN) is one of the common microvascular complications of diabetes mellitus. Renal fibrosis is closely related to the deterioration of renal function. The present study aimed to investigate protective effect of Taxus chinensis on high-fat diet/streptozotocin-induced DN in rats and explore the underlying mechanism of action. The rat DN model was established via feeding high fat diet for 4 weeks and subsequently injecting streptozotocin (30 mg·kg body weight) intraperitoneally. The rats with blood glucose levels higher than 16.8 mmol·L were selected for experiments. The DN rats were treated with Taxus chinensis orally (0.32, 0.64, and 1.28 g·kg) once a day for 8 weeks. Taxus chinensis significantly improved the renal damage, which was indicated by the decreases in 24-h urinary albumin excretion rate, blood serum creatinine, and blood urea nitrogen. Histopathological examination confirmed the protective effect of Taxus chinensis. The thickness of glomerular basement membrane was reduced, and proliferation of mesangial cells and podocytes cells and increase in mesangial matrix were attenuated. Further experiments showed that Taxus chinensis treatment down-regulated the expression of TGF-β1 and α-SMA, inhibited phosphorylation of Smad2 and Smad3. These results demonstrated that Taxus chinensis alleviated renal injuries in DN rats, which may be associated with suppressing TGF-β1/Smad signaling pathway.
Albumins
;
Animals
;
Blood Glucose
;
metabolism
;
Creatinine
;
blood
;
Diabetic Nephropathies
;
blood
;
drug therapy
;
genetics
;
urine
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
metabolism
;
Taxus
;
chemistry
;
Transforming Growth Factor beta1
;
metabolism

Result Analysis
Print
Save
E-mail