1.NIP7 upregulates the expression of ubiquitin-conjugating enzyme E2 C to promote tumor growth in anaplastic thyroid cancer.
Yingying GONG ; Ziwen FANG ; Yixuan WANG ; Minghua GE ; Zongfu PAN
Journal of Zhejiang University. Medical sciences 2025;54(3):372-381
OBJECTIVES:
To investigate the role of nucleolar pre-rRNA processing protein NIP7 (NIP7) in maintaining the malignant phenotype of anaplastic thyroid cancer (ATC) and its molecular mechanisms.
METHODS:
NIP7 expression in ATC tissues and its gene knock-out effects in ATC cells were analyzed using gene expression microarray (GSE33630), proteome database (IPX0008941000) and the Dependency Map database, respectively. Expression and localization of NIP7 in normal thyroid cells, papillary thyroid cancer cells, and ATC cells were detected by Western blotting. Small interfering RNA (siRNA) was transfected into ATC cells, and the knockdown efficiency of NIP7 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by CCK-8 assay, colony formation was evaluated by colony formation assay, and tumor growth was assessed by xenograft tumor model in nude mice. SUnSET (surface sensing of translation) assay combined with co-immunoprecipitation were employed to evaluate the effect of NIP7 silencing on ubiquitin-conjugating enzyme E2 C (UBE2C) translation. Finally, gene set enrichment analysis was used to identify shared pathways of NIP7 and UBE2C, which were validated by qRT-PCR.
RESULTS:
Compared with normal tissues and papillary thyroid cancer, NIP7 was significantly upregulated in ATC tissues, and had a gene knock-out fitness effect on different ATC cell lines. The relative protein levels of NIP7 in ATC cells were significantly higher than those in normal thyroid follicular cells, and the protein was mainly expressed in the nucleus. NIP7 silencing significantly inhibited cell proliferation and reduced colony formation. Xenograft tumor model showed that NIP7 knockdown significantly slowed down the growth of ATC xenograft, and the tumor volume and weight were significantly lower than those in the control group (all P<0.05). NIP7 silencing downregulated the protein level of UBE2C, but did not affect the expression of UBE2C mRNA. Compared to the control group, UBE2C silencing significantly inhibited ATC cells proliferation (P<0.01) and colony formation (P<0.05). UBE2C overexpression reversed the proliferation-inhibitory effect induced by NIP7 silencing (P<0.01). Gene set enrichment analysis indicated that NIP7 and UBE2C were both involved in DNA replication. NIP7 or UBE2C silencing could significantly downregulate the expression levels of DNA polymerase epsilon, catalytic subunit 2 and replication factor C4 in DNA replication pathway.
CONCLUSIONS
NIP7 promotes ATC tumor growth by upregulating UBE2C to mediate DNA replication.
Humans
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Thyroid Neoplasms/genetics*
;
Thyroid Carcinoma, Anaplastic/genetics*
;
Animals
;
Mice, Nude
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation
;
Up-Regulation
;
RNA, Small Interfering/genetics*
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
2.Moxibustion promotes endometrial repair in rats with thin endometrium by inhibiting the NLRP3/pyroptosis axis via upregulating miR-223-3p.
Haiyi ZHOU ; Siyi HE ; Ruifang HAN ; Yongge GUAN ; Lijuan DONG ; Yang SONG
Journal of Southern Medical University 2025;45(7):1380-1388
OBJECTIVES:
To explore the mechanism through which moxibustion promotes endometrial repair in rats with in thin endometrium (TE).
METHODS:
Female SD rats were randomized into control group, 95% anhydrous ethanol-induced TE model group and moxibustion (at "Guan Yuan") group. High-throughput sequencing was used to identify the target genes of TE, and the targeting relationship between miR-223-3p and NLRP3 was verified using a dual luciferase assay. Histopathological of rat uterus was observed with HE staining, and expressions of miR-223-3p and NLRP3 were detected using RT-qPCR; serum levels of IL-1β and IL-18 of the rats were detected using ELISA, and protein expressions of NLRP3, ASC, caspase-1 and GSDMD in the uterus were detected with Western blotting. The pregnancies of the rats after treatment were counted.
RESULTS:
Enrichment analysis of the differential genes suggested up-regulated inflammatory response in TE, and dual luciferase assay verified targeted inhibition of NLRP3 expression by miR-223-3p. The rat models of TE had significantly decreased endometrial thickness and reduced endometrial glands and blood vessels with enhanced mRNA expression of NLRP3, increased serum levels of IL-1β and IL-18, up-regulated protein expressions of NLRP3, ASC, caspase-1 and GSDMD, lowered pregnancy rates on both the affected and unaffected sides and the overall number of pregnancies. Treatment of the rat models with mo-xibustion obviously increased the endometrial thickness and the density of glands and blood vessels, up-regulated miR-223-3p expression, lowered serum IL-1β and IL-18 levels and the protein expressions of NLRP3, ASC, caspase-1 and GSDMD, and significantly increased the number of pregnancies.
CONCLUSIONS
Moxibustion at "Guan Yuan" acupoint up-regulates the expression of miR-223-3p, which results in targeted inhibition of NLRP3 to suppress pyroptosis and promote endometrial repair in rat models of TE.
Animals
;
Female
;
MicroRNAs/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endometrium/pathology*
;
Rats, Sprague-Dawley
;
Rats
;
Moxibustion
;
Pyroptosis
;
Up-Regulation
;
Interleukin-1beta/metabolism*
;
Interleukin-18
;
Caspase 1/metabolism*
3.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
4.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms
5.Chinese agarwood petroleum ether extract suppressed gastric cancer progression via up-regulation of DNA damage-induced G0/G1 phase arrest and HO-1-mediated ferroptosis.
Lishan OUYANG ; Xuejiao WEI ; Fei WANG ; Huiming HUANG ; Xinyu QIU ; Zhuguo WANG ; Peng TAN ; Yufeng GAO ; Ruoxin ZHANG ; Jun LI ; Zhongdong HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1210-1220
Gastric cancer (GC) is characterized by high morbidity and mortality rates. Chinese agarwood comprises the resin-containing wood of Aquilaria sinensis (Lour.) Gilg., traditionally utilized for treating asthma, cardiac ischemia, and tumors. However, comprehensive research regarding its anti-GC effects and underlying mechanisms remains limited. In this study, Chinese agarwood petroleum ether extract (CAPEE) demonstrated potent cytotoxicity against human GC cells, with half maximal inhibitory concentration (IC50) values for AGS, HGC27, and MGC803 cells of 2.89, 2.46, and 2.37 μg·mL-1, respectively, at 48 h. CAPEE significantly induced apoptosis in these GC cells, with B-cell lymphoma-2 (BCL-2) associated X protein (BAX)/BCL-2 antagonist killer 1 (BAK) likely mediating CAPEE-induced apoptosis. Furthermore, CAPEE induced G0/G1 phase cell cycle arrest in human GC cells via activation of the deoxyribonucleic acid (DNA) damage-p21-cyclin D1/cyclin-dependent kinase 4 (CDK4) signaling axis, and increased Fe2+, lipid peroxides and reactive oxygen species (ROS) levels, thereby inducing ferroptosis. Ribonucleic acid (RNA) sequencing, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses revealed CAPEE-mediated upregulation of heme oxygenase-1 (HO-1) in human GC cells. RNA interference studies demonstrated that HO-1 knockdown reduced CAPEE sensitivity and inhibited CAPEE-induced ferroptosis in human GC cells. Additionally, CAPEE administration exhibited robust in vivo anti-GC activity without significant toxicity in nude mice while inhibiting tumor cell growth and promoting apoptosis in tumor tissues. These findings indicate that CAPEE suppresses human GC cell growth through upregulation of the DNA damage-p21-cyclin D1/CDK4 signaling axis and HO-1-mediated ferroptosis, suggesting its potential as a candidate drug for GC treatment.
Animals
;
Humans
;
Mice
;
Antineoplastic Agents, Phytogenic
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cyclin D1/genetics*
;
Cyclin-Dependent Kinase 4/genetics*
;
DNA Damage/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Ferroptosis/drug effects*
;
G1 Phase Cell Cycle Checkpoints/drug effects*
;
Heme Oxygenase-1/genetics*
;
Mice, Inbred BALB C
;
Mice, Nude
;
Plant Extracts/pharmacology*
;
Stomach Neoplasms/physiopathology*
;
Thymelaeaceae/chemistry*
;
Up-Regulation/drug effects*
6.Study on the Role and Mechanism of METTL3 Mediating the Up-regulation of m6A Modified Long Non-coding RNA THAP7-AS1 in Promoting the Occurrence of Lung Cancer.
Yu ZHANG ; Yanhong WANG ; Mei LIU
Chinese Journal of Lung Cancer 2024;26(12):919-933
BACKGROUND:
Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.
METHODS:
Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.
RESULTS:
Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).
CONCLUSIONS
LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
RNA, Long Noncoding/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Up-Regulation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Methyltransferases/metabolism*
;
Cullin Proteins/genetics*
7.Thalamocortical Circuit Controls Neuropathic Pain via Up-regulation of HCN2 in the Ventral Posterolateral Thalamus.
Yi YAN ; Mengye ZHU ; Xuezhong CAO ; Gang XU ; Wei SHEN ; Fan LI ; Jinjin ZHANG ; Lingyun LUO ; Xuexue ZHANG ; Daying ZHANG ; Tao LIU
Neuroscience Bulletin 2023;39(5):774-792
The thalamocortical (TC) circuit is closely associated with pain processing. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is predominantly expressed in the ventral posterolateral thalamus (VPL) that has been shown to mediate neuropathic pain. However, the role of VPL HCN2 in modulating TC circuit activity is largely unknown. Here, by using optogenetics, neuronal tracing, electrophysiological recordings, and virus knockdown strategies, we showed that the activation of VPL TC neurons potentiates excitatory synaptic transmission to the hindlimb region of the primary somatosensory cortex (S1HL) as well as mechanical hypersensitivity following spared nerve injury (SNI)-induced neuropathic pain in mice. Either pharmacological blockade or virus knockdown of HCN2 (shRNA-Hcn2) in the VPL was sufficient to alleviate SNI-induced hyperalgesia. Moreover, shRNA-Hcn2 decreased the excitability of TC neurons and synaptic transmission of the VPL-S1HL circuit. Together, our studies provide a novel mechanism by which HCN2 enhances the excitability of the TC circuit to facilitate neuropathic pain.
Animals
;
Mice
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics*
;
Neuralgia
;
RNA, Small Interfering
;
Thalamus/metabolism*
;
Up-Regulation
8.Lactate-induced up-regulation of PLEKHA4 promotes proliferation and apoptosis of human glioma cells.
Jingjing YE ; Wenqin XU ; Bangsheng XI ; Nengqian WANG ; Tianbing CHEN
Journal of Southern Medical University 2023;43(7):1071-1080
OBJECTIVE:
To investigate the effect of lactic acid-induced upregulation of PLEKHA4 expression on biological behaviors of glioma cells and the possible molecular mechanism.
METHODS:
GEO database and GEPIA2 website were used to analyze the relationship between PLEKHA4 expression level and the pathological grade of glioma. A specific PLEKHA4 siRNA was transfected in glioma U251 and T98G cells, and the changes in cell proliferation ability were assessed by real-time cell analysis technology and Edu experiment. The colony-forming ability of the cells was evaluated using plate cloning assay, and cell cycle changes and cell apoptosis were analyzed with flow cytometry. The mRNA expression of PLEKHA4 was detected by PCR in glioma samples and controls and in glioma cells treated with lactic acid and glucose. Xenograft mice in vivo was used to detect tumor formation in nude mice; Western blotting was used to detect the expressions of cyclinD1, CDK2, Bcl2, β-catenin and phosphorylation of the key proteins in the MAPK signaling pathway.
RESULTS:
The results of GEO database and online website analysis showed that PLEKHA4 was highly expressed in glioma tissues and was associated with poor prognosis; PLEKHA4 knockdown obviously inhibited the proliferation and attenuated the clone-forming ability of the glioma cells (P < 0.05). Flow cytometry showed that PLEKHA4 knockdown caused cell cycle arrest in G1 phase and promoted apoptosis of the cells (P < 0.01). PLEKHA4 gene mRNA expression was increased in glioma samples and glioma cells after lactate and glucose treatment (P < 0.01). PLEKHA4 knockdown, tumor formation ability of nude mice decreased; PLEKHA4 knockdown obviously lowered the expression of cyclinD1, CDK2, Bcl2 and other functional proteins, inhibited the phosphorylation of ERK and p38 and reduced the expression of β-catenin protein (P < 0.01).
CONCLUSION
PLEKHA4 knockdown inhibited the proliferation of glioma cells and promoted apoptosis by inhibiting the activation of the MAPK signaling pathway and expression of β-catenin. Lactic acid produced by glycolysis upregulates the expression of PLEKHA4 in glioma cells.
Humans
;
Animals
;
Mice
;
Up-Regulation
;
beta Catenin/metabolism*
;
Mice, Nude
;
Brain Neoplasms/pathology*
;
Lactic Acid
;
Cell Line, Tumor
;
Glioma/pathology*
;
Cell Proliferation
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/genetics*
;
Gene Expression Regulation, Neoplastic
9.Up-regulation of androgen receptor by heat shock protein 27 and miR-1 induces pathogenesis of androgenic alopecia.
Journal of Central South University(Medical Sciences) 2022;47(1):72-78
OBJECTIVES:
The pathogenesis of androgenetic alopecia (AGA) is related to the level of androgen and its metabolic pathways. The binding of androgen and androgen receptor (AR) depends on the assistance of heat shock protein 27 (HSP27). HSP27 combined with microRNAs (miR)-1 can regulate AR levels. However, it is not clear whether HSP27 and miR-1 jointly participate in the pathogenesis of AGA. This study aims to investigate the role of AR up-regulation in the pathogenesis of AGA and underlying mechanisms.
METHODS:
A total of 46 male AGA patients (AGA group), who admitted to the First Affiliated Hospital of Guangzhou Medical University from September 2019 to February 2020, and 52 healthy controls admitted to the same period were enrolled in this study. Serum levels of dihydrotestosterone (DHT) and HSP27 in patients and healthy controls were measured by ELISA. Western blotting was used to detect the protein expression of HSP27 and AR in scalp tissues of patients and the healthy controls. The levels of HSP27, AR, and miR-1 were analyzed using real-time PCR. Human dermal papilla cells were transfected with HSP27 siRNA to inhibit the expression of HSP27. MiR-1 and miR-1 inhibitors were transfected simultaneously or separately into cells and then the changes in AR protein expression were detected.
RESULTS:
The levels of DHT and HSP27 in the AGA group were (361.4±187.7) pg/mL and (89.4±21.8) ng/mL, respectively, which were higher than those in the control group [(281.8±176.6) pg/mL and (41.2±13.7) ng/mL, both P<0.05]. However, there was no significant difference in serum HSP27 and AR levels among AGA patients with different degrees of hair loss (P>0.05). Correlation analysis showed that there was a positive correlation between HSP27 level and DHT level in the AGA patients (P<0.05). The level of HSP27 mRNA in scalp tissue was negatively correlated with that of miR-1 mRNA (P<0.05). Compared with the control group, the levels of HSP27 protein, AR protein, HSP27 mRNA, and AR mRNA in scalp tissues of AGA group were significantly increased (P<0.05). The up-regulation of HSP27 in scalp tissues of AGA patients was closely related to the increased levels of AR. However, the level of miR-1 in scalp tissues of AGA patients was significantly down-regulated, contrary to the expression of AR (P<0.05). Further in cell studies showed that inhibition of HSP27 or miR-1 expression in human dermal papilla cells could inhibit the expression of AR, and inhibition of both HSP27 and miR-1 expression was found to have an accumulative effect on AR, with statistically significant differences (all P<0.05).
CONCLUSIONS
HSP27 could combine with miR-1 to up-regulate AR levels, which is closely related to the development of AGA.
Alopecia/pathology*
;
HSP27 Heat-Shock Proteins/metabolism*
;
Humans
;
Male
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Receptors, Androgen/metabolism*
;
Up-Regulation
10.CD36 gene deletion reduces muscle insulin sensitivity in mice by up-regulating PTP1B expression.
Lin CHEN ; Han ZENG ; Hong QIN ; Xiong Zhong RUAN ; Ping YANG
Journal of Southern Medical University 2022;42(3):392-398
OBJECTIVE:
To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.
METHODS:
Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.
RESULTS:
CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.
CONCLUSION
CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.
Animals
;
Gene Deletion
;
Histones/genetics*
;
Insulin
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance/genetics*
;
Membrane Cofactor Protein/genetics*
;
Mice
;
Mice, Knockout
;
Muscles/metabolism*
;
Phosphoric Monoester Hydrolases/metabolism*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Receptor, Insulin/metabolism*
;
Tyrosine/genetics*
;
Up-Regulation

Result Analysis
Print
Save
E-mail