1.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
2.Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway.
Chao WANG ; Meng-Xin WANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1398-1407
OBJECTIVES:
To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway.
METHODS:
A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze.
RESULTS:
At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05).
CONCLUSIONS
HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.
NF-E2-Related Factor 2/physiology*
;
Animals
;
Rats, Sprague-Dawley
;
Signal Transduction/physiology*
;
Humans
;
Rats
;
White Matter/pathology*
;
Kelch-Like ECH-Associated Protein 1/physiology*
;
Umbilical Cord/cytology*
;
Heme Oxygenase-1/physiology*
;
Animals, Newborn
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Heme Oxygenase (Decyclizing)/physiology*
;
Mesenchymal Stem Cells/physiology*
;
Female
;
Hypoxia-Ischemia, Brain
3.MicroRNA-204 Carried by Exosomes of Human Umbilical Cord-derived Mesenchymal Stem Cells Regulates the Polarization of Macrophages in a Mouse Model of Myocardial Ischemia-reperfusion Injury.
Gaili YUAN ; Dongwei YANG ; Limei LUO ; Wen WEN
Acta Academiae Medicinae Sinicae 2022;44(5):785-793
Objective To explore the role and mechanism of microRNA-204(miR-204) carried by the exosomes of human umbilical cord-derived mesenchymal stem cells(hUC-MSC) in regulating the polarization of macrophages in a mouse model of myocardial ischemia-reperfusion(I/R) injury. Methods After the hUC-MSCs were isolated,cultured,and identified,their adipogenic and osteogenic differentiation capabilities were determined.The exosomes of hUC-MSCs were separated by ultracentrifugation,and the expression of CD81,CD63,tumor susceptibility gene 101(Tsg101),and calnexin in the exosomes was determined by Nanoparticle Tracking Analysis software,transmission electron microscopy,and Western blotting.Three groups(hUC-MSC,miR-204 mimic,and negative control) were designed for the determination of the expression of miR-204 in the cells and their exosomes by qRT-PCR.The C57BL/6J mice were randomly assigned into a sham operation group,an I/R group,a hUC-MSC exosomes group,a negative control group,and a miR-204 mimic group.Except the sham operation group,the I/R model was established by ligating the left anterior descending artery.The echocardiography system was employed to detect the heart function of mice.HE staining was employed to observe the pathological changes of mouse myocardium.ELISA was employed to determine the levels of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),arginase 1(Arg-1),and IL-10 in the myocardial tissue.After the macrophages of mouse myocardial tissue were isolated,flow cytometry was employed to determine the expression of CD11c and CD206,and ELISA to measure the levels of IL-1β,TNF-α,Arg-1,and IL-10 in the macrophages. Results hUC-MSCs had adipogenic and osteogenic differentiation capabilities,and the exosomes were successfully identified.Compared with the negative control group,the miR-204 mimic group showed up-regulated expression of miR-204 in hUC-MSCs and their exosomes(P<0.001,P<0.001).Compared with the sham operation group,the modeling of I/R increased the left ventricular end-diastolic diameter(LVEDD)(P<0.001),left ventricular end-systolic diameter(LVESD)(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P<0.001),and CD11c(P<0.001).Meanwhile,it lowered the left ventricular ejection fraction(LVEF)(P<0.001),left ventricular fractional shortening(LVFS)(P<0.001),Arg-1(P<0.001),IL-10(P<0.001),and CD206(P<0.001).Compared with those in the I/R group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P=0.010),and CD11c(P<0.001) reduced,while LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.028),and CD206(P=0.022) increased in the hUC-MSC exosomes group.Compared with those in the negative control group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P=0.001),and the levels of IL-1β(P=0.048),TNF-α(P<0.001),and CD11c(P=0.007) reduced,while the LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.001),and CD206(P=0.001) increased in the miR-204 mimic group. Conclusion The hUC-MSC exosomes overexpressing miR-204 can inhibit the polarization of macrophages in the I/R mouse model to M1-type and promote the polarization to M2-type.
Animals
;
Humans
;
Mice
;
Disease Models, Animal
;
Exosomes/pathology*
;
Interleukin-10/metabolism*
;
Macrophages
;
Mesenchymal Stem Cells
;
Mice, Inbred C57BL
;
MicroRNAs/genetics*
;
Myocardial Reperfusion Injury
;
Osteogenesis
;
Stroke Volume
;
Tumor Necrosis Factor-alpha/metabolism*
;
Umbilical Cord/pathology*
;
Ventricular Function, Left
4.Pregnancy Outcomes in COVID-19: A Prospective Cohort Study in Singapore.
Citra Nz MATTAR ; Shirin KALIMUDDIN ; Sapna P SADARANGANI ; Shephali TAGORE ; Serene THAIN ; Koh Cheng THOON ; Eliane Y HONG ; Abhiram KANNEGANTI ; Chee Wai KU ; Grace Mf CHAN ; Kelvin Zx LEE ; Jeannie Jy YAP ; Shaun S TAN ; Benedict YAN ; Barnaby E YOUNG ; David C LYE ; Danielle E ANDERSON ; Liying YANG ; Lin Lin SU ; Jyoti SOMANI ; Lay Kok TAN ; Mahesh A CHOOLANI ; Jerry Ky CHAN
Annals of the Academy of Medicine, Singapore 2020;49(11):857-869
INTRODUCTION:
Pregnant women are reported to be at increased risk of severe coronavirus disease 2019 (COVID-19) due to underlying immunosuppression during pregnancy. However, the clinical course of COVID-19 in pregnancy and risk of vertical and horizontal transmission remain relatively unknown. We aim to describe and evaluate outcomes in pregnant women with COVID-19 in Singapore.
METHODS:
Prospective observational study of 16 pregnant patients admitted for COVID-19 to 4 tertiary hospitals in Singapore. Outcomes included severe disease, pregnancy loss, and vertical and horizontal transmission.
RESULTS:
Of the 16 patients, 37.5%, 43.8% and 18.7% were infected in the first, second and third trimesters, respectively. Two gravidas aged ≥35 years (12.5%) developed severe pneumonia; one patient (body mass index 32.9kg/m2) required transfer to intensive care. The median duration of acute infection was 19 days; one patient remained reverse transcription polymerase chain reaction (RT-PCR) positive >11 weeks from diagnosis. There were no maternal mortalities. Five pregnancies produced term live-births while 2 spontaneous miscarriages occurred at 11 and 23 weeks. RT-PCR of breast milk and maternal and neonatal samples taken at birth were negative; placenta and cord histology showed non-specific inflammation; and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulins were elevated in paired maternal and umbilical cord blood (n=5).
CONCLUSION
The majority of COVID-19 infected pregnant women had mild disease and only 2 women with risk factors (obesity, older age) had severe infection; this represents a slightly higher incidence than observed in age-matched non-pregnant women. Among the women who delivered, there was no definitive evidence of mother-to-child transmission via breast milk or placenta.
Abortion, Spontaneous/epidemiology*
;
Adult
;
COVID-19/transmission*
;
COVID-19 Nucleic Acid Testing
;
COVID-19 Serological Testing
;
Cohort Studies
;
Disease Transmission, Infectious/statistics & numerical data*
;
Female
;
Fetal Blood/immunology*
;
Humans
;
Infectious Disease Transmission, Vertical/statistics & numerical data*
;
Live Birth/epidemiology*
;
Maternal Age
;
Milk, Human/virology*
;
Obesity, Maternal/epidemiology*
;
Placenta/pathology*
;
Pregnancy
;
Pregnancy Complications, Infectious/physiopathology*
;
Pregnancy Outcome/epidemiology*
;
Pregnancy Trimester, First
;
Pregnancy Trimester, Second
;
Prospective Studies
;
RNA, Viral/analysis*
;
Risk Factors
;
SARS-CoV-2
;
Severity of Illness Index
;
Singapore/epidemiology*
;
Umbilical Cord/pathology*
;
Young Adult
5.Cancer stem-like cell-derived exosomes promotes the proliferation and invasion of human umbilical cord blood-derived mesenchymal stem cells.
Dan ZHANG ; Dawei HE ; Dian LI ; Bo TANG ; Dong HU ; Wenhao GUO ; Zhang WANG ; Lianju SHEN ; Guanghui WEI
Journal of Southern Medical University 2018;38(12):1440-1447
OBJECTIVE:
To investigate the effect of Piwil2-induced cancer stem-like cell (Piwil2-iCSC)-derived exosomes on the proliferation,migration and invasion of human umbilical cord blood-derived mesenchymal stem cells (hucMSCs).
METHODS:
Piwil2-iCSC-derived exosomes were isolated by ultracentrifugation and identified using transmission electron microscopy,nanoparticle tracking analysis and Western blotting.Exosome uptake assay was used to identify the pathway that Piwil2-iCSCderived exosomes utilized.HucMSCs were divided into control group,PBS intervention group and exosome intervention group,and CCK-8 assay,wound healing assay,Transwell assay,Western blotting and cell karyotype analysis were used to observe the proliferation,migration,invasion,expression levels of MMP2 and MMP9 proteins,and chromosome structure of hucMSCs.
RESULTS:
The diameter of Piwil2-iCSC-derived exosomes ranged from 50 nm to 100 nm,and most of them were oval or spherical capsules rich in CD9,CD63 and Piwil2 proteins.Exosomal uptake assay showed that the exosomes executed theirs functions after entering the cells.Compared with the control cells and PBS-treated cells,hucMSCs treated with the exosomes showed significantly increased number of proliferating cells (<0.05) with accelerated healing rate (<0.05 at 24 h;<0.01 at 48 h),increased invasive cells (<0.01),enhanced protein expressions of MMP2(<0.05 PBS group;<0.01 control group) and MMP9(<0.05),but their karyotype still remained 46XY without any abnormalities.
CONCLUSIONS
Piwil2-iCSC-derived exosomes can promote the proliferation,migration and invasion but does not cause cancer-like heterogeneity changes in hucMSCs.
Argonaute Proteins
;
Cell Movement
;
physiology
;
Cell Proliferation
;
physiology
;
Exosomes
;
physiology
;
Fetal Blood
;
cytology
;
Humans
;
Karyotyping
;
Mesenchymal Stem Cells
;
pathology
;
Neoplasm Invasiveness
;
Neoplastic Stem Cells
;
Umbilical Cord
;
Wound Healing
6.Human Umbilical Cord-derived Mesenchymal Stem Cells Secrete Interleukin-6 to Influence Differentiation of Leukemic Cells.
Fang CHEN ; Feng-xia MA ; Yang LI ; Fang-yun XU ; Ying CHI ; Shi-hong LU ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2016;38(2):164-168
OBJECTIVETo investigate the effect of human umbilical cord-derived mesenchymal stem cells (UC-MSC) on the differentiation of leukemic cells.
METHODSThe co-culture system of UC-MSC with acute promyelocytic leukemic cell line NB4 cells was constructed in vitro,and the differentiation status of the leukemic cells was assessed by cell morphology,nitroblue tetrazolium reduction test,and cell surface differentiation marker CD11b.
RESULTSUC-MSC induced the granulocytic differentiation of NB4 cells. When UC-MSC and a small dose of all-trans retinoic acid were applied together,the differentiation-inducing effect was enhanced in an additive manner. Interleukin (IL)-6Ra neutralization attenuated differentiation and exogenous IL-6-induced differentiation of leukemic cells.
CONCLUSIONUC-MSC can promotd granulocytic differentiation of acute promyelocytic leukemia cells by way of IL-6 and presented additive effect when combined with a small dose of all-trans retinoic acid.
Cell Differentiation ; Cell Line, Tumor ; Humans ; Interleukin-6 ; metabolism ; Leukemia, Promyelocytic, Acute ; pathology ; Mesenchymal Stromal Cells ; metabolism ; Tretinoin ; pharmacology ; Umbilical Cord ; cytology
7.Effect of chemical microenvironment after traumatic brain injury on temperature-sensitive umbilical cord mesenchymal stem cells.
Ming-liang ZHAO ; Yi-sheng CHEN ; Xiao-hong LI ; Jing-jing WANG ; Yue TU ; Hong-tao SUN ; Sai ZHANG ; Chonga CHEN
Chinese Journal of Applied Physiology 2015;31(3):207-215
OBJECTIVETo simulate the chemical microenvironment of injured brain tissue, and to explore the effect of this chemical microenvironment on temperature sensitive umbilical cord mesenchymal stem cells (tsUC).
METHODSRat models of traumatic brain injury (TBI) were made by fluid percussion injury, and then the brain tissue extracts of the injured regions were acquired. Human umbilical cord mesenchymal stem cells (UC) were isolated and cultured, and the tsUC were obtained through the infection of temperature-sensitive Simian 40 Large T- antigen (ts-SV40LT) retrovirus. After that, both the two kinds of cells were cultured on the polyacrylamide gels which mimicking the elastic modulus of brain. Four groups were included: UC cultured under normal temperature (UC group), UC cultured added brain tissue extract under normal temperature (UC plus extract group), tsUC cultured under mild hypothermia (tsUC group), and tsUC added brain tissue extract under mild hypothermia for 3 days, then normal temperature for 4 days (tsUC plus extract group). After 24 hours, the apoptosis level was checked. Cell growth and morphological changes in each group were given dynamic observation. Seven days later, cell immunofluorescences were implemented for examining neural differentiation level.
RESULTSCompared with UC plus extract group, the apoptosis and proliferation in UC plus extract group were significantly reduced (P < 0.01) and increased (P < 0.01) respectively. Cell immunofluorescence showed that the both GFAP and Neuron positive cells were significantly enhanced in UC plus extract group than those in tsUC plus extract group.
CONCLUSIONtsUC combining with mild hypothermia could significantly reverse injury induced cell apoptosis, improve cell proliferation and neural differentiation under chemical microenvironment after brain injury, which confirmed the adaptation and resistance of tsUC under mild hypothermia after TBI.
Animals ; Apoptosis ; Brain ; cytology ; pathology ; Brain Injuries ; pathology ; Cell Proliferation ; Humans ; Mesenchymal Stromal Cells ; chemistry ; Neurons ; cytology ; Rats ; Temperature ; Umbilical Cord ; cytology
8.Intrahepatic cholestasis of pregnancy and fetal injury.
Lijuan ZHANG ; Fenghua ZHANG ; Lili TANG ; Weihong YANG ; Xue ZHANG
Journal of Central South University(Medical Sciences) 2013;38(6):645-652
Intrahepatic cholestasis of pregnancy (ICP) is an unique complication in pregnancy, which usually manifests in the second or third trimester, and mainly harms the fetus. Its pathogenesis is not yet clear, and placental pathological changes are insufficient to explain the clinical phenomenon.Recent studies had shown that the important cause of perinatal deaths may be the damage to the placental structure and function caused by the high bile acid level. In addition, the change of placental structure and function, umbilical cord factors, and endocrine changes can also cause the fetal development and intrauterine hypoxia. In recent years related researches focus on the toxic effect of bile acid on fetus heart, lungs, brain, liver, and other important organs, the placental vascular pathology, hemodynamic changes, umbilical cord blood vessel factors and the endocrine changes.
Bile Acids and Salts
;
metabolism
;
Cholestasis, Intrahepatic
;
metabolism
;
pathology
;
Female
;
Fetal Diseases
;
etiology
;
metabolism
;
Fetus
;
metabolism
;
Humans
;
Maternal-Fetal Exchange
;
Placenta
;
pathology
;
Pregnancy
;
Pregnancy Complications
;
metabolism
;
pathology
;
Umbilical Cord
;
metabolism
;
pathology
9.Deformation of the left and right ventricular longitudinal myocardium in fetuses with umbilical cord around neck.
Dong-Mei ZUO ; Chao-Hong WANG ; Yue-Heng WANG
Chinese Medical Journal 2012;125(9):1608-1613
BACKGROUNDUmbilical cord around neck, a common obstetric complication, affects fetal hemodynamics. Does it influence fetal cardiac functions? The purpose of this study was to investigate the left and right ventricular systolic and diastolic functions of fetuses with umbilical cord around neck in the third trimester by applying velocity vector imaging (VVI).
METHODSThirty-five cases of fetuses with umbilical cord around neck whose gestational ages from 35 to 40 weeks were selected, including 20 cases of umbilical artery ratio of the highest systolic velocity (S) to the lowest diastolic velocity (D) (S/D) < 3.0 and 15 cases of umbilical artery S/D ≥ 3.0, while 20 cases of normal fetuses of 35 - 40 gestational weeks were selected as the control group. The changes in longitudinal velocity, strain, and strain rate of fetal left and right ventricle in systole and diastole in two groups, and the changes in fetal cardiac function under the situation of umbilical cord around neck were analyzed.
RESULTSLongitudinal strain and strain rate overall of fetal left and right ventricle in systole and diastole were less in fetuses with umbilical artery S/D (3)3.0 and umbilical cord around neck than those in fetuses with umbilical artery S/D < 3.0 and those in control group (P < 0.05); there was no significant difference (P > 0.05) in longitudinal strain and strain rate overall of fetal left and right ventricle in systole and diastole between fetuses with umbilical artery S/D < 3.0 and those in control group.
CONCLUSIONSLeft and right ventricular systolic and diastolic dysfunction was detected in fetuses with umbilical cord around neck and umbilical artery S/D (3)3.0. VVI could sensitively respond to cardiac function changes in fetuses with umbilical cord around neck, which provides another valuable method in the evaluation of fetal cardiac function.
Adult ; Female ; Fetus ; abnormalities ; physiopathology ; Gestational Age ; Heart Ventricles ; diagnostic imaging ; pathology ; physiopathology ; Humans ; Myocardium ; pathology ; Pregnancy ; Pregnancy Complications ; Ultrasonography, Prenatal ; Umbilical Arteries ; diagnostic imaging ; pathology ; physiopathology ; Umbilical Cord ; diagnostic imaging ; physiopathology ; Young Adult
10.Relationship between placental pathology and small-for-gestational age neonates.
Xue-jun ZHAO ; Jin-ping XU ; Bing LI ; Jiu-ling QI ; Sheng-min PING ; Hai-yun ZHU ; Bo-ning LIU
Chinese Journal of Pathology 2012;41(11):737-741
OBJECTIVETo investigate the relationship between pathological abnormalities of placenta and small-for-gestational-age neonates.
METHODSOne hundred placentas of small-for-gestational-age (SGA group) and 200 appropriate-for-gestational-age (AGA group) with single living birth in third trimester were investigated by gross and microscopic examination. The AGA placentas were collected from 2 cases following every SGA placenta. All cases were collected from Shanghai Changning District Maternity and Infant Health Hospital from January 2010 to December 2011.
RESULTSThe gestational week, neonatal birth weight, full-term neonatal birth weight, the preterm birth rate and vaginal spontaneous delivery rate were significantly lower in SGA group than that in AGA group (P < 0.002). Full-term placental volume, placental weight and fetal placental weight ratio were lower in SGA group than that in AGA group (P < 0.05). Unusual insertion and torsion of umbilical cord were more common in SGA group (P < 0.05). Syncytial knots increase, avascular villi and villous infarcts were significantly higher in SGA group (P < 0.005), but there were no significant difference between SGA group and AGA group in intervillous thrombi, chronic villitis and chorangiosis (P > 0.05). Gestational hypertension disease and abnormality of fetal monitoring were more common in SGA group (P < 0.05).
CONCLUSIONSGestational hypertension disease is the main clinical cause of SGA. Some placental abnormality can affect the growth and development of intrauterine fetus.
Birth Weight ; Female ; Gestational Age ; Humans ; Hypertension, Pregnancy-Induced ; Infant, Newborn ; Infant, Small for Gestational Age ; Placenta ; pathology ; Pregnancy ; Torsion, Mechanical ; Umbilical Cord ; pathology

Result Analysis
Print
Save
E-mail