2.HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway.
Yuting XU ; Li ZHANG ; Dickson Kofi Wiredu OCANSEY ; Bo WANG ; Yilin HOU ; Rong MEI ; Yongmin YAN ; Xu ZHANG ; Zhaoyang ZHANG ; Fei MAO
Journal of Zhejiang University. Science. B 2022;23(5):423-431
As a group of nonspecific inflammatory diseases affecting the intestine, inflammatory bowel disease (IBD) exhibits the characteristics of chronic recurring inflammation, and was proven to be increasing in incidence (Kaplan, 2015). IBD induced by genetic background, environmental changes, immune functions, microbial composition, and toxin exposures (Sasson et al., 2021) primarily includes ulcerative colitis (UC) and Crohn's disease (CD) with complicated clinical symptoms featured by abdominal pain, diarrhea, and even blood in stools (Fan et al., 2021; Huang et al., 2021). UC is mainly limited to the rectum and the colon, while CD usually impacts the terminal ileum and colon in a discontinuous manner (Ordás et al., 2012; Panés and Rimola, 2017). In recent years, many studies have suggested the lack of effective measures in the diagnosis and treatment of IBD, prompting an urgent need for new strategies to understand the mechanisms of and offer promising therapies for IBD.
Chronic Disease
;
Colitis, Ulcerative/therapy*
;
Crohn Disease/epidemiology*
;
Diarrhea
;
Homeodomain Proteins
;
Humans
;
Inflammatory Bowel Diseases
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs
;
RNA, Long Noncoding
;
Recurrence
;
Umbilical Cord/cytology*
3.Expression of Twist1, SIRT1, FGF2 and TGF-β3 genes and its regulatory effect on the proliferation of placenta, umbilical cord and dental pulp mesenchymal stem cells.
Yao TAN ; Yin DENG ; Keyou PENG ; Zhengzhou SUN ; Jianqiu HUANG ; Xuntong GU ; Fusheng ZHANG ; Hanqing PENG ; Xuechao ZHANG ; Rong ZHANG
Chinese Journal of Medical Genetics 2021;38(2):117-122
OBJECTIVE:
To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).
METHODS:
The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.
RESULTS:
The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.
CONCLUSION
Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.
Cell Differentiation
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Dental Pulp/cytology*
;
Female
;
Fibroblast Growth Factor 2/genetics*
;
Humans
;
Mesenchymal Stem Cells/cytology*
;
Nuclear Proteins/genetics*
;
Placenta/cytology*
;
Pregnancy
;
Sirtuin 1/genetics*
;
Transforming Growth Factor beta3/genetics*
;
Twist-Related Protein 1/genetics*
;
Umbilical Cord/cytology*
4.Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition.
Jing YANG ; Huazhong HU ; Shuqin ZHANG ; Linrui JIANG ; Yuanxiong CHENG ; Haojun XIE ; Xiaoyan WANG ; Jiaohua JIANG ; Hong WANG ; Qun ZHANG
Journal of Zhejiang University. Medical sciences 2020;40(7):988-994
OBJECTIVE:
To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.
METHODS:
Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.
RESULTS:
Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.
CONCLUSIONS
hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.
Animals
;
Epithelial-Mesenchymal Transition
;
Exosomes
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
Mice
;
Pulmonary Fibrosis
;
therapy
;
Transforming Growth Factor beta1
;
genetics
;
Umbilical Cord
;
cytology
5.Cancer stem-like cell-derived exosomes promotes the proliferation and invasion of human umbilical cord blood-derived mesenchymal stem cells.
Dan ZHANG ; Dawei HE ; Dian LI ; Bo TANG ; Dong HU ; Wenhao GUO ; Zhang WANG ; Lianju SHEN ; Guanghui WEI
Journal of Southern Medical University 2018;38(12):1440-1447
OBJECTIVE:
To investigate the effect of Piwil2-induced cancer stem-like cell (Piwil2-iCSC)-derived exosomes on the proliferation,migration and invasion of human umbilical cord blood-derived mesenchymal stem cells (hucMSCs).
METHODS:
Piwil2-iCSC-derived exosomes were isolated by ultracentrifugation and identified using transmission electron microscopy,nanoparticle tracking analysis and Western blotting.Exosome uptake assay was used to identify the pathway that Piwil2-iCSCderived exosomes utilized.HucMSCs were divided into control group,PBS intervention group and exosome intervention group,and CCK-8 assay,wound healing assay,Transwell assay,Western blotting and cell karyotype analysis were used to observe the proliferation,migration,invasion,expression levels of MMP2 and MMP9 proteins,and chromosome structure of hucMSCs.
RESULTS:
The diameter of Piwil2-iCSC-derived exosomes ranged from 50 nm to 100 nm,and most of them were oval or spherical capsules rich in CD9,CD63 and Piwil2 proteins.Exosomal uptake assay showed that the exosomes executed theirs functions after entering the cells.Compared with the control cells and PBS-treated cells,hucMSCs treated with the exosomes showed significantly increased number of proliferating cells (<0.05) with accelerated healing rate (<0.05 at 24 h;<0.01 at 48 h),increased invasive cells (<0.01),enhanced protein expressions of MMP2(<0.05 PBS group;<0.01 control group) and MMP9(<0.05),but their karyotype still remained 46XY without any abnormalities.
CONCLUSIONS
Piwil2-iCSC-derived exosomes can promote the proliferation,migration and invasion but does not cause cancer-like heterogeneity changes in hucMSCs.
Argonaute Proteins
;
Cell Movement
;
physiology
;
Cell Proliferation
;
physiology
;
Exosomes
;
physiology
;
Fetal Blood
;
cytology
;
Humans
;
Karyotyping
;
Mesenchymal Stem Cells
;
pathology
;
Neoplasm Invasiveness
;
Neoplastic Stem Cells
;
Umbilical Cord
;
Wound Healing
6.Angiopoietin-1 Modified Human Umbilical Cord Mesenchymal Stem Cell Therapy for Endotoxin-Induced Acute Lung Injury in Rats.
Zhi Wei HUANG ; Ning LIU ; Dong LI ; Hai Yan ZHANG ; Ying WANG ; Yi LIU ; Le Ling ZHANG ; Xiu Li JU
Yonsei Medical Journal 2017;58(1):206-216
PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.
Acute Lung Injury/chemically induced/*therapy
;
Angiopoietin-1/*genetics
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Cytokines/metabolism
;
Endotoxins
;
Genetic Therapy
;
Interleukin-10/metabolism
;
Interleukin-6/metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung/metabolism
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/metabolism
;
Neutrophils/metabolism
;
Rats
;
Transforming Growth Factor beta1/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
;
Umbilical Cord/*cytology
7.Human Umbilical Cord-derived Mesenchymal Stem Cells Secrete Interleukin-6 to Influence Differentiation of Leukemic Cells.
Fang CHEN ; Feng-xia MA ; Yang LI ; Fang-yun XU ; Ying CHI ; Shi-hong LU ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2016;38(2):164-168
OBJECTIVETo investigate the effect of human umbilical cord-derived mesenchymal stem cells (UC-MSC) on the differentiation of leukemic cells.
METHODSThe co-culture system of UC-MSC with acute promyelocytic leukemic cell line NB4 cells was constructed in vitro,and the differentiation status of the leukemic cells was assessed by cell morphology,nitroblue tetrazolium reduction test,and cell surface differentiation marker CD11b.
RESULTSUC-MSC induced the granulocytic differentiation of NB4 cells. When UC-MSC and a small dose of all-trans retinoic acid were applied together,the differentiation-inducing effect was enhanced in an additive manner. Interleukin (IL)-6Ra neutralization attenuated differentiation and exogenous IL-6-induced differentiation of leukemic cells.
CONCLUSIONUC-MSC can promotd granulocytic differentiation of acute promyelocytic leukemia cells by way of IL-6 and presented additive effect when combined with a small dose of all-trans retinoic acid.
Cell Differentiation ; Cell Line, Tumor ; Humans ; Interleukin-6 ; metabolism ; Leukemia, Promyelocytic, Acute ; pathology ; Mesenchymal Stromal Cells ; metabolism ; Tretinoin ; pharmacology ; Umbilical Cord ; cytology
8.Effects of Leukemia Inhibitory Factor Combined with Basic Fibroblast Growth Factor on Self-maintenance and Self-renewal of Human Umbilical Cord Mesenchymal Stem Cells In Vitro.
Wen-Long HU ; Ping-Ping WU ; Chang-Chang YIN ; Jian-Ming SHI ; Ming YIN
Journal of Experimental Hematology 2016;24(1):184-190
OBJECTIVETo study the effects of LIF combined with bFGF on the proliferation, stemness and senescence of hUC-MSC.
METHODSExperiments were divided into 4 groups: control group, in which the cells were treated with complete medium (α-MEM containing 10% FBS); group LIF, in which the cells were treated with complete medium containing 10 ng/ml LIF; group bFGF, in which the cells were treated with complete medium containing 10 ng/ml bFGF; combination group, in which the cells were treated with complete medium containing 10 ng/ml LIF and 10 ng/ml bFGF. The growth curves of hUC-MSC at passage 4 in different groups were assayed by cell counting kit 8. Cellular morphologic changes were observed under inverted phase contrast microscope; hUC-MSC senescence in different groups was detected by β-galactosidase staining. The expression of PCNA, P16, P21, P53, OCT4 and NANOG genes was detected by RT-PCR.
RESULTSThe cell growth curves of each group were similar to the S-shape; the cell proliferation rate from high to low as follows: that in the combination group > group bFGF > group LIF > control group. Senescence and declining of proliferation were observed at hUC-MSC very early in control group; the cells in group LIF maintained good cellular morphology at early stage, but cell proliferation was slow and late senescence was observed; a few cells in group bFGF presented signs of senescence, but with quick proliferation; the cells in combination group grew quickly and maintained cellular morphology of hUC-MSC for long time. The LIF and bFGF up-regulated the expression of PCNA, OCT4 and NANOG, while they down-regulated the expression of P16, P21, P53, and their combinative effects were more significant.
CONCLUSIONLIF combined with bFGF not only can promote the proliferation and maintenance of stemness of hUC-MSC, but also can delay the senescence of hUC-MSC.
Cell Cycle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Fibroblast Growth Factor 2 ; pharmacology ; Genes, Homeobox ; Humans ; Leukemia Inhibitory Factor ; pharmacology ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Octamer Transcription Factor-3 ; metabolism ; Organic Chemicals ; Proliferating Cell Nuclear Antigen ; metabolism ; Tumor Suppressor Protein p53 ; metabolism ; Umbilical Cord ; cytology
9.Effect of Human Umbilical Cord Mesenchymal Stem Cells on Etoposide-induced Nalm-6 Cell Apoptosis.
Jian-Ling WANG ; Dong LI ; Xue LI ; Pan-Pan ZHOU ; Xiu-Li JU
Journal of Experimental Hematology 2016;24(1):178-183
OBJECTIVETo investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSC) on VP16-induced apoptosis of Nalm-6 cells.
METHODShUC-MSC were isolated and identified using morphological observation and flow cytometry, then Nalm-6 cells were treated with hUC-MSC with or without VP16. Apoptosis and cell cycle were assayed by FACS. The mRNA levels of apoptosis-related genes BCL-2, BAX and caspase-3 were detected by quantitative RT-PCR, and the protein levels of BCL-2, BAX and caspase-3 were examined by Western blot.
RESULTSFACS showed that hUC-MSC inhibited the proliferation and decreased apoptosis of Nalm-6 cells resulted from VP16. The quantitative RT-PCR showed that hUC-MSC increased the mRNA expression level of BCL-2 and decreased the expression level of BAX and caspase-3 (P < 0.05). Western blot showed that the protein expression level of BCL-2 increased, and expression level of BAX and caspase-3 decreased in Nalm-6 cells after co-culture with hUC-MSC (P < 0.05).
CONCLUSIONhUC-MSC may protect Nalm-6 cells from apoptosis induced by VP16 through regulation of BCL-2, BAX and caspase-3.
Apoptosis ; Caspase 3 ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cells, Cultured ; Coculture Techniques ; Etoposide ; adverse effects ; Flow Cytometry ; Humans ; Mesenchymal Stromal Cells ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Umbilical Cord ; cytology ; bcl-2-Associated X Protein ; metabolism
10.Differentiation of human umblical cord mesenchymal stem cells into Leydig cells in the rat testis interstitium: An experimental study.
Zhi-Yuan ZHANG ; Kun LIU ; Xiao-Yu XING ; Guan-Qun JU ; Liang ZHONG ; Jie SUN
National Journal of Andrology 2016;22(8):680-685
ObjectiveTo explore the feasibility of inducing human umbilical cord mesenchymal stem cells (HUMSCs) to differentiate into Leydig cells in the interstitial tissue of the rat testis.
METHODSHUMSCs were obtained by tissue blocks culture attachment and their purity and multi-lineage differentiation ability were verified by flow cytometry and chondrogenic/adipogenic/osteogenic differentiation. Then the HUMSCs were marked by CM-Dil and transplanted into the interstitial tissue of the rat testis. At 4 and 8 weeks after transplantation, the survival and differentiation status of the HUMSCs were observed by immunofluorescence staining and flow cytometry. The suspension of the rat Leydig cells was obtained at 8 weeks for determining the expression of the Leydig cell marker 3β-HSD in the HUMSCs, the cells labeled with CM-Dil were sorted and cultured, and the medium collected after 3 days of culture for measurement of the testosterone level.
RESULTSThe expression of the Leydig cell marker CYPllal was not observed in the HUMSCs at 4 weeks but found at 8 weeks after transplantation and the differentiation rate of 3β-HSD was about 14.5% at 8 weeks. CM-Dil labeled cells survived after sorting and testosterone was detected in the medium.
CONCLUSIONSHUMSCs are likely to differentiate into Leydig cells in the interstitium of the rat testis.
Animals ; Biomarkers ; metabolism ; Carbocyanines ; Cell Differentiation ; Cholesterol Side-Chain Cleavage Enzyme ; metabolism ; Feasibility Studies ; Humans ; Leydig Cells ; cytology ; metabolism ; Male ; Mesenchymal Stromal Cells ; cytology ; Rats ; Testis ; cytology ; Time Factors ; Umbilical Cord ; cytology

Result Analysis
Print
Save
E-mail