1.Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression.
Lu-Xin LI ; Ting-Ting JI ; Li LU ; Xiao-Ying LI ; Li-Min LU ; Shou-Jun BAI
Acta Physiologica Sinica 2025;77(3):385-394
Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in in vitro studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and in vitro tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.
Animals
;
Fibrosis
;
Male
;
Ubiquitination
;
Mice
;
Mice, Inbred C57BL
;
DEAD Box Protein 58
;
Ubiquitin-Protein Ligases/physiology*
;
Inflammation/metabolism*
;
Ureteral Obstruction/complications*
;
Kidney/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
2.Roles and mechanisms of TRIM family proteins in the regulation of bone metabolism.
Jing YANG ; Rui-Qi HUANG ; Ke XU ; Mian-Mian YANG ; Xue-Jie YI ; Bo CHANG ; Ting-Ting YAO
Acta Physiologica Sinica 2025;77(3):472-482
Tripartite motif-containing (TRIM) family proteins are crucial E3 ubiquitin ligases that have garnered significant attention for their regulatory roles in bone metabolism in recent years. This article reviews the function and regulatory mechanisms of TRIM family proteins in bone metabolism, focusing on their dual roles in bone formation and resorption. It also provides a detailed analysis of signaling pathways and molecular mechanisms by which TRIM family members regulate the activities of osteoblasts and osteoclasts. Research findings suggest that modulating the expression or activity of TRIM family proteins could be beneficial for treating bone diseases such as osteoporosis. This review highlights the molecular mechanisms of TRIM family members in bone physiology and pathology, aiming to provide theoretical basis and scientific guidance for developing novel therapeutic strategies for bone diseases.
Humans
;
Ubiquitin-Protein Ligases/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Tripartite Motif Proteins/physiology*
;
Osteoclasts/metabolism*
;
Osteoblasts/metabolism*
;
Signal Transduction/physiology*
;
Osteogenesis/physiology*
3.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
4.Ginsenoside Rg_1 protects PC12 cells against Aβ-induced injury through promotion of mitophagy by PINK1/parkin activation.
He-Mei LI ; Yi-Xuan JIANG ; Pan-Ling HUANG ; Bo-Cun LI ; Zi-Yu PAN ; Yu-Qing LI ; Xing XIA
China Journal of Chinese Materia Medica 2022;47(2):484-491
Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.
Amyloid beta-Peptides/toxicity*
;
Animals
;
Ginsenosides/pharmacology*
;
Humans
;
Mitophagy/physiology*
;
PC12 Cells
;
Protein Kinases/metabolism*
;
Rats
;
Ubiquitin-Protein Ligases/metabolism*
5.Research progress on mechanism of Nix-mediated mitophagy.
Yanrong ZHENG ; Xiangnan ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):92-96
Autophagy is fundamental to maintain cellular homeostasis. As one kind of the most well-studied selective autophagy, autophagy of mitochondria (mitophagy)is crucial for the clearance of damaged mitochondria. Mitophagy dysfunction has been proved to be closely associated with many human diseases. Nix is a key protein for mitophagy during the maturation of reticulocytes. However, the detailed molecular mechanisms underlying Nix-mediated mitophagy are not fully understood. This article summarizes three possible working models of Nix in mitophagy induction. Firstly, Nix can interplay with Parkin, another important protein for mitophagy, to initiate mitophagy. Secondly, Nix can serve as a receptor for autophagy machinery by interacting with Atg8 family through its LIR motif. Finally, as a BH3-only protein, Nix can compete with Beclin-1 to bind other members of Bcl-2 family resulting in increased free Beclin-1 in cytosol, which further promotes autophagy flux.
Autophagy
;
genetics
;
physiology
;
Autophagy-Related Protein 8 Family
;
physiology
;
Beclin-1
;
physiology
;
Membrane Proteins
;
physiology
;
Mitochondria
;
genetics
;
physiology
;
Mitochondrial Degradation
;
genetics
;
physiology
;
Protein Interaction Domains and Motifs
;
Proto-Oncogene Proteins
;
physiology
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
Tumor Suppressor Proteins
;
physiology
;
Ubiquitin-Protein Ligases
;
physiology
6.Advances in the research of mechanism of protein ubiquitination in wound healing.
Chinese Journal of Burns 2016;32(2):119-121
Ubiquitin, a critical small molecular protein, plays an important role in regulating multiple signaling pathways. Ubiquitination is a post-translational modification induced by ubiquitin through an ATP-dependent enzyme catalyzed reaction. A large number of proteins in the complicated signaling network participate in wound healing. This paper reviews the research progress in regulation of ubiquitin and ubiquitination for wound healing processes regarding the recent years.
Signal Transduction
;
physiology
;
Ubiquitin
;
metabolism
;
Ubiquitin-Protein Ligases
;
physiology
;
Ubiquitination
;
Wound Healing
;
physiology
7.Endoplasmic Reticulum Stress Induces the Early Appearance of Pro-apoptotic and Anti-apoptotic Proteins in Neurons of Five Familial Alzheimer's Disease Mice.
Hui SHEN ; Xiao-Dong PAN ; Jing ZHANG ; Yu-Qi ZENG ; Meng ZHOU ; Lu-Meng YANG ; Bing YE ; Xiao-Man DAI ; Yuan-Gui ZHU ; Xiao-Chun CHEN ;
Chinese Medical Journal 2016;129(23):2845-2852
BACKGROUNDAmyloid β (Aβ) deposits and the endoplasmic reticulum stress (ERS) are both well established in the development and progression of Alzheimer's disease (AD). However, the mechanism and role of Aβ-induced ERS in AD-associated pathological progression remain to be elucidated.
METHODSThe five familial AD (5×FAD) mice and wild-type (WT) mice aged 2, 7, and 12 months were used in the present study. Morris water maze test was used to evaluate their cognitive performance. Immunofluorescence and Western blot analyses were used to examine the dynamic changes of pro-apoptotic (CCAAT/enhancer-binding protein homologous protein [CHOP] and cleaved caspase-12) and anti-apoptotic factors (chaperone glucose-regulated protein [GRP] 78 and endoplasmic reticulum-associated protein degradation-associated ubiquitin ligase synovial apoptosis inhibitor 1 [SYVN1]) in the ERS-associated unfolded protein response (UPR) pathway.
RESULTSCompared with age-matched WT mice, 5×FAD mice showed higher cleaved caspase-3, lower neuron-positive staining at the age of 12 months, but earlier cognitive deficit at the age of 7 months (all P < 0.05). Interestingly, for 2-month-old 5×FAD mice, the related proteins involved in the ERS-associated UPR pathway, including CHOP, cleaved caspase-12, GRP 78, and SYVN1, were significantly increased when compared with those in age-matched WT mice (all P < 0.05). Moreover, ERS occurred mainly in neurons, not in astrocytes.
CONCLUSIONSThese findings suggest that compared with those of age-matched WT mice, ERS-associated pro-apoptotic and anti-apoptotic proteins are upregulated in 2-month-old 5×FAD mice, consistent with intracellular Aβ aggregation in neurons.
Alzheimer Disease ; metabolism ; Amyloid beta-Peptides ; metabolism ; Animals ; Apoptosis ; physiology ; Blotting, Western ; Caspase 12 ; metabolism ; Endoplasmic Reticulum Stress ; physiology ; Frontal Lobe ; metabolism ; Heat-Shock Proteins ; metabolism ; Immunohistochemistry ; Mice ; Mice, Transgenic ; Neurons ; metabolism ; Transcription Factor CHOP ; metabolism ; Ubiquitin-Protein Ligases ; metabolism ; Unfolded Protein Response ; physiology
8.Ubiquitin-proteasome system and sperm DNA repair: An update.
Guo-Wei ZHANG ; Hong-Cai CAI ; Xue-Jun SHANG
National Journal of Andrology 2016;22(9):834-837
The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.
Cell Cycle Proteins
;
physiology
;
DNA Damage
;
DNA Repair
;
physiology
;
Humans
;
Male
;
Proteasome Endopeptidase Complex
;
physiology
;
Signal Transduction
;
physiology
;
Spermatogenesis
;
physiology
;
Spermatozoa
;
Ubiquitin
;
physiology
;
Ubiquitin-Conjugating Enzymes
;
physiology
;
Ubiquitin-Protein Ligases
;
physiology
;
Ubiquitination
9.Inhibition of cellular proliferation by knockdown of MARCH6 gene expression in breast cancer cells.
Ni SHEN ; Yujie WANG ; Weibing ZHOU ; Zhan WANG ; Qingsong TU ; Wuzhong JIANG
Journal of Central South University(Medical Sciences) 2016;41(10):1009-1015
To investigate effects of MARCH6 gene knockdown on MCF-7 cell proliferation and cell cycle.
Methods: 293T cells were transfected with MARCH6 shRNA lentivirus. Fluorescence microscope was used to observe and verify the transfection efficiency. The initial effect of the MARCH6 gene knockdown in MCF-7 cells was observed via fluorescence microscope. Real-time PCR and Western blot were used to detect the expression of MARCH6. MTT and BrdU assay were used to examine cell proliferation, and staining flow cytometry was used to analyze cycle distribution of MCF-7 cells.
Results: MARCH6 shRNA lentivirus was successfully transfected and about 80% of the cells expressed green fluorescent in comparison of the control. About 90% of the cells showed green fluorescence. The mRNA and protein in MCF-7 cells were transcription and expression of protein was significantly decreased after the transfection of MARCH6 shRNA lentivirus accompanied by a decrease in MCF-7 cell proliferation (P<0.01). Flow cytometry showed that the cell cycles were inhibited at the G1 phase and the proliferation index was significantly reduced.
Conclusion: Knockdown of MARCH6 gene by RNA interference inhibits the proliferation of MCF-7 cells, suggesting that the expression of MARCH6 promotes proliferation of breast cancer cells through regulation of the cell cycle.
Adenocarcinoma
;
genetics
;
Breast Neoplasms
;
genetics
;
Cell Cycle
;
Cell Division
;
Cell Proliferation
;
genetics
;
Female
;
G1 Phase
;
genetics
;
Gene Knockdown Techniques
;
Humans
;
Hyperplasia
;
Lentivirus
;
MCF-7 Cells
;
physiology
;
Membrane Proteins
;
physiology
;
RNA Interference
;
RNA, Messenger
;
RNA, Small Interfering
;
Real-Time Polymerase Chain Reaction
;
Transfection
;
Ubiquitin-Protein Ligases
;
physiology
10.The changes of p-Akt/MuRF1/FoxO1 proteins expressions in the conditions of training and immobilization in rats' gastrocnemius muscle.
Yan-Hong SU ; ; Zhe SU ; Kai ZHANG ; Qian-Kun YUAN ; Qiang LIU ; Shen LV ; Zhao-Hui WANG ; Wei ZOU
Acta Physiologica Sinica 2014;66(5):589-596
This study was aimed to investigate the changes of muscle protein synthesis and degradation under different movement conditions, so as to provide theoretical basis for muscle atrophy mechanism. Sprague Dawley (SD) rats were randomly divided into control, endurance training (treadmill training), hind limb overhanging and eccentric training (treadmill training, angle -16º) groups. The gastrocnemius muscles of rats were taken and weighed. The muscle was sectioned, and HE staining was employed to determine the cell's cross-sectional area. Protein expression of p-Akt was measured by immunohistochemistry; and the expressions of MuRF1 and FoxO1 were determined by Western blot. The results showed that, compared with control group, hind limb overhanging and eccentric training groups exhibited decreased muscle weight and cross-sectional area, but endurance training group did not show any changes. The expressions of p-Akt in endurance and eccentric training groups, not in hind limb overhanging group, were significantly higher than that in control group. Compared with that of control, MuRF1 protein remained unchanged in endurance training groups, but was increased in eccentric training and hind limb overhanging groups; FoxO1 protein was decreased in endurance training group, but was increased in eccentric training and hind limb overhanging groups. These results indicate that movement (endurance and eccentric training) can activate Akt expression, but does not increase muscle weight, whereas eccentric training and hind limb overhanging can increase the expressions of MuRF1 and FoxO1, and induce amyotrophy, suggesting MuRF1 and FoxO1 are major determinant factors in muscle atrophy.
Animals
;
Forkhead Transcription Factors
;
physiology
;
Hindlimb Suspension
;
Muscle Proteins
;
physiology
;
Muscle, Skeletal
;
physiology
;
Muscular Atrophy
;
physiopathology
;
Nerve Tissue Proteins
;
physiology
;
Physical Conditioning, Animal
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
physiology

Result Analysis
Print
Save
E-mail