1.Brain injury biomarkers and applications in neurological diseases.
Han ZHANG ; Jing WANG ; Yang QU ; Yi YANG ; Zhen-Ni GUO
Chinese Medical Journal 2025;138(1):5-14
Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Humans
;
Biomarkers/cerebrospinal fluid*
;
Nervous System Diseases/diagnosis*
;
Brain Injuries/metabolism*
;
Phosphopyruvate Hydratase/cerebrospinal fluid*
;
Glial Fibrillary Acidic Protein/blood*
;
S100 Calcium Binding Protein beta Subunit/blood*
;
tau Proteins/cerebrospinal fluid*
;
Ubiquitin Thiolesterase/blood*
;
Myelin Basic Protein/cerebrospinal fluid*
;
Neurofilament Proteins/blood*
;
MicroRNAs/blood*
;
Brain Injuries, Traumatic/metabolism*
2.miR-15b-5p affects PIK3CA/AKT1 pathway through USP9X to alleviate airway inflammation in asthma.
Yuyang ZHOU ; Zhiguang WANG ; Yihua PIAO ; Xue HAN ; Yilan SONG ; Guanghai YAN ; Hongmei PIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):193-203
Objective To investigate whether miR-15b-5p can alleviate airway inflammation in asthma by negatively regulating ubiquitin specific peptidase 9X (USP9X) to down-regulate the expression of phosphatidylinositol 4, 5-diphosphate 3-kinase catalytic subunit α/AKT serine/threonine kinase 1 (PIK3CA/AKT1) pathway. Methods USP9X was predicted to be a direct target of miR-15b-5p by using an online database (miRWalk), and the luciferase reporter gene assay was performed to verify it. Co-immunoprecipitation (CO-IP) was used to verify the direct binding between USP9X and PIK3CA and the role of USP9X and its small molecule inhibitor WP1130 in the deubiquitination of PIK3CA. C57 mice were randomly divided into Control group, OVA group, OVA combined with NC group and miR-15b-5p agomir group, with 10 mice in each group. BEAS-2B cells were induced with interleukin 13 (IL-13) and treated with miR-15b-5p mimic. HE, Masson, PAS, immunohistochemistry, immunofluorescence staining, flow cytometry, Western blot and quantitative real-time PCR(qRT-PCR) were performed. Results It was found that the administration of miR-15b-5p agomir and mimic could reduce peribronchial inflammatory cells and improve airway inflammation, and miR-15b-5p could target negative regulation of USP9X. USP9X could directly bind to PIK3CA and regulate PIK3CA level in a proteasome-dependent manner, and USP9X could deubiquitinate K29-linked PIK3CA protein. Down-regulation of USP9X could increase PIK3CA ubiquitination level. WP1130, a small molecule inhibitor of USP9X, has the same effect as knockdown of USP9X, both of which could increase the ubiquitination level of PIK3CA and reduce the protein level of PIK3CA. Conclusion The miR-15b-5p/USP9X/PIK3CA/AKT1 signaling pathway may provide potential therapeutic targets for asthma.
Animals
;
MicroRNAs/metabolism*
;
Asthma/pathology*
;
Class I Phosphatidylinositol 3-Kinases/genetics*
;
Ubiquitin Thiolesterase/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Mice
;
Signal Transduction
;
Mice, Inbred C57BL
;
Humans
;
Inflammation/genetics*
;
Cell Line
;
Female
;
Male
3.Ubiquitin-specific peptidase 21 promotes M2 polarization of endometriotic macrophages by increasing FOXM1 stability.
Min DONG ; Min XU ; Derong FANG ; Yiyuan CHEN ; Mingzhe ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):603-610
Objective To explore the mechanism of ubiquitin specific peptidase 21 (USP21) increasing the stability of forkhead box protein M1 (FOXM1) and promoting M2 polarization of macrophages in endometriosis (EM). Methods Eutopic endometrial stromal cells (EESC) collected from patients and normal endometrial stromal cells (NESC) from routine health examiners were cultured in vitro, and the expression levels of USP21 and FOXM1 were detected using RT-qPCR and Western blot. EESCs were co-cultured with macrophages. M1 polarization markers of interleukin 6 (IL-6) and CXC chemokine ligand 10 (CXCL10) and M2 polarization markers of CD206 and fibronectin 1 (FN1) were tested using RT-qPCR. M2 marker CD206 was further detected by flow cytometry. IL-6, tumor necrosis factor-alpha (TNF-α), IL-10, and transforming growth factor-beta (TGF-β) levels in cell supernatant were detected by ELISA. Co-immunoprecipitation was used to assess the interaction between USP21 and FOXM1, and the ubiquitination level of FOXM1. FOXM1 protein stability was detected through cycloheximide (CHX) assay. Results USP21 and FOXM1 expression levels in the EESC group were significantly increased compared with those in the NESC group; compared with the NESC + M0 group, the EESC + M0 group showed no significant difference in the expression of M1 polarization markers (IL-6 and CXCL10), but increased expression of M2 polarization markers (CD206 and FN1), along with notably increased number of M2 macrophages; there was no significant difference in IL-6 and TNF-α levels, but increased levels of IL-10 and TGF-β in the cell supernatant. The above findings indicated that the deubiquitinase USP21 was highly expressed in EM, promoting M2 polarization of macrophages. Knocking down USP21 or FOXM1 can inhibit M2 polarization of EM macrophages. USP21 interacted with FOXM1 in EESC, leading to a decrease in FOXM1 ubiquitination level and an increase in FOXM1 protein stability. Overexpression of FOXM1 reversed the inhibitory effect of knocking down USP21 on M2 polarization of EM macrophages. Conclusion The deubiquitinase USP21 interacts with FOXM1 to increase the stability of FOXM1 and promote M2 polarization of EM macrophages.
Humans
;
Forkhead Box Protein M1/genetics*
;
Female
;
Macrophages/cytology*
;
Endometriosis/genetics*
;
Ubiquitin Thiolesterase/genetics*
;
Cells, Cultured
;
Endometrium/metabolism*
;
Ubiquitination
;
Adult
;
Interleukin-10/metabolism*
;
Interleukin-6/metabolism*
;
Protein Stability
;
Stromal Cells/metabolism*
4.13-Docosenamide Enhances Oligodendrocyte Precursor Cell Differentiation via USP33-Mediated Deubiquitination of CNR1 in Chronic Cerebral Hypoperfusion.
Yuhao XU ; Yi TAN ; Zhi ZHANG ; Duo CHEN ; Chao ZHOU ; Liang SUN ; Shengnan XIA ; Xinyu BAO ; Haiyan YANG ; Yun XU
Neuroscience Bulletin 2025;41(11):1939-1956
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which plays a significant role in contributing to vascular cognitive impairment. While 13-docosenamide is a type of fatty acid amide, it remains unclear whether it has therapeutic effects on chronic cerebral hypoperfusion. In this study, we conducted bilateral common carotid artery stenosis (BCAS) surgery to simulate chronic cerebral hypoperfusion-induced WMI and cognitive impairment. Our findings showed that 13-docosenamide alleviates WMI and cognitive impairment in BCAS mice. Mechanistically, 13-docosenamide specifically binds to cannabinoid receptor 1 (CNR1) in oligodendrocyte precursor cells (OPCs). This interaction results in an upregulation of ubiquitin-specific peptidase 33 (USP33)-mediated CNR1 deubiquitination, subsequently increasing CNR1 protein expression, activating the phosphorylation of the AKT/mTOR pathway, and promoting the differentiation of OPCs. In conclusion, our study suggests that 13-docosenamide can ameliorate chronic cerebral hypoperfusion-induced WMI and cognitive impairment by enhancing OPC differentiation and could serve as a potential therapeutic drug.
Animals
;
Oligodendrocyte Precursor Cells/metabolism*
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Receptor, Cannabinoid, CB1/metabolism*
;
Mice, Inbred C57BL
;
Ubiquitin Thiolesterase/metabolism*
;
Ubiquitination/drug effects*
;
Carotid Stenosis/complications*
;
Cognitive Dysfunction/drug therapy*
5.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
6.Fibroma of tendon sheath: a clinicopathological and genetic analysis of 134 cases.
Jian CUI ; Ya LU ; Yan QIU ; Xin HE ; Min CHEN ; Hong Ying ZHANG
Chinese Journal of Pathology 2023;52(4):364-369
Objective: To investigate the clinicopathological features, immunophenotypes and molecular genetics of fibroma of tendon sheath (FTS). Methods: One hundred and thirty-four cases of FTS or tenosynovial fibroma diagnosed in the Department of Pathology, West China Hospital, Sichuan University, Chengdu, China from January 2008 to April 2019 were selected. The clinical and histologic features of these cases were retrospectively reviewed. Immunohistochemistry, fluorescence in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR) were performed on the above cases. Results: There were a total of 134 cases of FTS, including 67 males and 67 females. The patients' median age was 38 years (ranged from 2 to 85 years). The median tumor size was 1.8 cm (ranged from 0.1 to 6.8 cm). The most common site was the upper extremity (76/134, 57%). Follow-up data was available in 28 cases and there was no detectable recurrence. Classic FTS (114 cases) were well-defined and hypocellular. A few spindle-shaped fibroblasts were scattered in the dense collagenous sclerotic stroma. Characteristically elongated slit-like spaces or thin-walled vessels were observed. Most of cellular FTSs (20 cases) were well-defined and the area with increased cellularity of the spindle cells coexisted with classic FTS. There were occasional mitotic figures, but no atypical mitotic figures. Immunohistochemistry was performed in 8 cases of classic FTS and most cases were positive for SMA (5/8). Immunohistochemistry was also performed in 13 cases of cellular FTS and showed 100% positive rate for SMA. FISH was conducted on 20 cases of cellular FTS and 32 cases of classical FTS. USP6 gene rearrangement was found in 11/20 of cellular FTS. Among 12 cases of CFTS with nodular fasciitis (NF)-like morphological feature, 7 cases showed USP6 gene rearrangement. The rearrangement proportion of USP6 gene in cellular FTS without NF-like morphological features was 4/8. By contrast, 3% (1/32) of the classic FTS showed USP6 gene rearrangement. RT-PCR was performed in those cases with detected USP6 gene rearrangement and sufficient tissue samples for RT-PCR. The MYH9-USP6 fusion gene was detected in 1 case (1/8) of the cellular FTSs, while no target fusion partner was detected in the classic FTS. Conclusions: FTS is a relatively rare benign fibroblastic or myofibroblastic tumor. Our study and recent literature find that some of the classic FTS also show USP6 gene rearrangements, suggesting that classical FTS and cellular FTS are likely to be at different stages of the same disease (spectrum). FISH for USP6 gene rearrangement may be used as an important auxiliary diagnostic tool in distinguishing FTS from other tumors.
Male
;
Female
;
Humans
;
Gene Rearrangement
;
In Situ Hybridization, Fluorescence
;
Retrospective Studies
;
Fibroma/pathology*
;
Fasciitis/genetics*
;
Ubiquitin Thiolesterase
;
Tendons/pathology*
8.RITA selectively inhibits proliferation of BAP1-deficient cutaneous melanoma cells in vitro.
Wenhui SHI ; Xiaolian LIU ; Guiming ZHANG ; Linxuan YE ; Runhua ZHOU ; Yilei LI ; Le YU
Journal of Southern Medical University 2023;43(5):710-717
OBJECTIVE:
To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.
METHODS:
Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.
RESULTS:
The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).
CONCLUSION
Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.
Humans
;
Melanoma
;
Skin Neoplasms
;
Tumor Suppressor Protein p53
;
Apoptosis
;
Cell Division
;
Tumor Suppressor Proteins/genetics*
;
Ubiquitin Thiolesterase/genetics*
10.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*

Result Analysis
Print
Save
E-mail