1.Fibroma of tendon sheath: a clinicopathological and genetic analysis of 134 cases.
Jian CUI ; Ya LU ; Yan QIU ; Xin HE ; Min CHEN ; Hong Ying ZHANG
Chinese Journal of Pathology 2023;52(4):364-369
Objective: To investigate the clinicopathological features, immunophenotypes and molecular genetics of fibroma of tendon sheath (FTS). Methods: One hundred and thirty-four cases of FTS or tenosynovial fibroma diagnosed in the Department of Pathology, West China Hospital, Sichuan University, Chengdu, China from January 2008 to April 2019 were selected. The clinical and histologic features of these cases were retrospectively reviewed. Immunohistochemistry, fluorescence in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR) were performed on the above cases. Results: There were a total of 134 cases of FTS, including 67 males and 67 females. The patients' median age was 38 years (ranged from 2 to 85 years). The median tumor size was 1.8 cm (ranged from 0.1 to 6.8 cm). The most common site was the upper extremity (76/134, 57%). Follow-up data was available in 28 cases and there was no detectable recurrence. Classic FTS (114 cases) were well-defined and hypocellular. A few spindle-shaped fibroblasts were scattered in the dense collagenous sclerotic stroma. Characteristically elongated slit-like spaces or thin-walled vessels were observed. Most of cellular FTSs (20 cases) were well-defined and the area with increased cellularity of the spindle cells coexisted with classic FTS. There were occasional mitotic figures, but no atypical mitotic figures. Immunohistochemistry was performed in 8 cases of classic FTS and most cases were positive for SMA (5/8). Immunohistochemistry was also performed in 13 cases of cellular FTS and showed 100% positive rate for SMA. FISH was conducted on 20 cases of cellular FTS and 32 cases of classical FTS. USP6 gene rearrangement was found in 11/20 of cellular FTS. Among 12 cases of CFTS with nodular fasciitis (NF)-like morphological feature, 7 cases showed USP6 gene rearrangement. The rearrangement proportion of USP6 gene in cellular FTS without NF-like morphological features was 4/8. By contrast, 3% (1/32) of the classic FTS showed USP6 gene rearrangement. RT-PCR was performed in those cases with detected USP6 gene rearrangement and sufficient tissue samples for RT-PCR. The MYH9-USP6 fusion gene was detected in 1 case (1/8) of the cellular FTSs, while no target fusion partner was detected in the classic FTS. Conclusions: FTS is a relatively rare benign fibroblastic or myofibroblastic tumor. Our study and recent literature find that some of the classic FTS also show USP6 gene rearrangements, suggesting that classical FTS and cellular FTS are likely to be at different stages of the same disease (spectrum). FISH for USP6 gene rearrangement may be used as an important auxiliary diagnostic tool in distinguishing FTS from other tumors.
Male
;
Female
;
Humans
;
Gene Rearrangement
;
In Situ Hybridization, Fluorescence
;
Retrospective Studies
;
Fibroma/pathology*
;
Fasciitis/genetics*
;
Ubiquitin Thiolesterase
;
Tendons/pathology*
3.RITA selectively inhibits proliferation of BAP1-deficient cutaneous melanoma cells in vitro.
Wenhui SHI ; Xiaolian LIU ; Guiming ZHANG ; Linxuan YE ; Runhua ZHOU ; Yilei LI ; Le YU
Journal of Southern Medical University 2023;43(5):710-717
OBJECTIVE:
To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.
METHODS:
Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.
RESULTS:
The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).
CONCLUSION
Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.
Humans
;
Melanoma
;
Skin Neoplasms
;
Tumor Suppressor Protein p53
;
Apoptosis
;
Cell Division
;
Tumor Suppressor Proteins/genetics*
;
Ubiquitin Thiolesterase/genetics*
4.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
6.Differential Proteomics Reveals the Potential Injury Mechanism Induced by Heavy Ion Radiation in Mice Ovaries.
Yu Xuan HE ; Hong ZHANG ; ; Hong Yan LI ; ; Yong ZHANG ; Qi Peng JIA ; Zong Shuai LI ; Xing Xu ZHAO
Biomedical and Environmental Sciences 2017;30(4):301-307
In the present study, we used a proteomics approach based on a two-dimensional electrophoresis (2-DE) reference map to investigate protein expression in the ovarian tissues of pubertal Swiss-Webster mice subjected to carbon ion radiation (CIR). Among the identified proteins, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is associated with the cell cycle[1] and that it influences proliferation in ovarian tissues. We analyzed the expression of UCH-L1 and the proliferation marker proliferation cell nuclear antigen (PCNA) following CIR using immunoblotting and immunofluorescence. The proteomics and biochemical results provide insight into the underlying mechanisms of CIR toxicity in ovarian tissues.
Animals
;
Biomarkers
;
Carrier Proteins
;
genetics
;
metabolism
;
Electrophoresis, Gel, Two-Dimensional
;
Female
;
Gene Expression
;
Heavy Ion Radiotherapy
;
adverse effects
;
Mice
;
Ovary
;
radiation effects
;
Proteomics
;
Random Allocation
;
Ubiquitin Thiolesterase
;
genetics
;
metabolism
7.Expression characteristics of the USP24 gene in the mouse testis during spermatogenesis.
Qi-Yi HU ; Qiong DENG ; Jian-Wen ZHANG ; Fan ZHI ; Rui SUN ; Hui LIANG
National Journal of Andrology 2017;23(11):963-968
Objective:
To investigate the expression characteristics of the USP24 gene in the mouse testis and its role in spermatogenesis.
METHODS:
We examined the expression characteristics of USP24 in the testis tissues of wild-type mice at different postnatal weeks (PNW) and androgen receptor (AR)-knockout (ARKO) adult mice using real-time quantitative PCR and immunofluorescence, and detected the transcriptional activity of the USP24 promoter by dual-luciferase reporter gene assay.
RESULTS:
The expression of the USP24 gene was low in the testis tissue of the wild-type mice at PNW 1, increased dramatically at PNW 3 and stayed at a similar level till PNW 8. The USP24 protein was located mainly in the cytoplasm of Sertoli and spermatogenic cells. Compared with the wild-type, the adult ARKO mice showed a decreased expression of USP24 localized in the posterior head and mid-piece of the mature sperm in the testis. Dual-luciferase reporter gene assay showed that the transcriptional activity of the USP24 promoter was increased after testosterone stimulation.
CONCLUSIONS
The increased expression of the USP24 gene was associated with the initiation of sexual development, and the USP24 protein was expressed in the mature sperm of the mice. USP24 is an AR-target gene, which may be involved in the regulation of spermatogenesis in mice.
Animals
;
Male
;
Mice
;
Mice, Knockout
;
Promoter Regions, Genetic
;
Receptors, Androgen
;
genetics
;
Sertoli Cells
;
Spermatogenesis
;
genetics
;
Spermatozoa
;
metabolism
;
Testis
;
metabolism
;
Testosterone
;
administration & dosage
;
Transcription, Genetic
;
Ubiquitin Thiolesterase
;
genetics
;
metabolism
8.Study on the association of USP8 gene polymorphisms with male infertility in ethnic Han Chinese from Sichuan.
Min DING ; Lingxiao LI ; Xianping DING ; Huaying REN ; Rong ZHONG
Chinese Journal of Medical Genetics 2015;32(2):269-273
OBJECTIVETo assess the association of single nucleotide polymorphisms (SNPs) of ubiquitin-specific protease 8 gene (USP8) with male infertility among ethnic Han Chinese from Sichuan.
METHODSA total of 316 infertile males were recruited (case group), which included 72 severe oligozoospermic (SO) cases and 244 non-obstructive azoospermic (NOA) cases. The control group consisted of 149 fertile males. The genotypes of 4 SNPs (rs2241769, rs11857513, rs7174015 and rs3743044) were determined with a Sequenom MassArray technique. The frequencies of genotype, allele and haploptye were analyzed.
RESULTSNo significant difference was detected in the allelic or genotypic frequencies of the 4 SNPs between the two groups (P>0.05). Based on linkage disequilibrium analysis and haplotype construction, the frequency distribution of haplotype CAAG showed a significant difference between non-obstructive azoospermic patients and the controls (P=0.021).
CONCLUSIONThe 4 SNPs (rs2241769, rs11857513, rs7174015 and rs3743044) of USP8 gene may not be associated with male infertility in ethnic Hans from Sichuan. While the haplotype CAAG may be a down-regulating factor for the risk of NOA.
Adult ; Asian Continental Ancestry Group ; ethnology ; genetics ; Azoospermia ; genetics ; Base Sequence ; Case-Control Studies ; China ; ethnology ; Endopeptidases ; genetics ; Endosomal Sorting Complexes Required for Transport ; genetics ; Genetic Predisposition to Disease ; ethnology ; Genotype ; Humans ; Infertility, Male ; ethnology ; genetics ; Male ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Ubiquitin Thiolesterase ; genetics
9.Molecular mechanism for the substrate recognition of USP7.
Jingdong CHENG ; Ze LI ; Rui GONG ; Jian FANG ; Yi YANG ; Chang SUN ; Huirong YANG ; Yanhui XU
Protein & Cell 2015;6(11):849-852
10.Chromosomal translocation involving USP6 gene in nodular fasciitis.
Jun CHEN ; Xinqing YE ; Yao LI ; Changhong WEI ; Qian ZHENG ; Ping ZHONG ; Shengming WU ; Yuan LUO ; Zhiling LIAO ; Hongtao YE
Chinese Journal of Pathology 2014;43(8):533-536
OBJECTIVETo investigate the frequency of USP6 gene rearrangement in nodular fasciitis (NF) and to evaluate its clinical application.
METHODSTwenty nine cases of previously diagnosed NF were screened for the presence of the USP6 gene rearrangement by interphase fluorescence-in-situ hybridization (FISH) on formalin-fixed paraffin-embedded tissue. Fifteen of these cases, which had available tissue, were also analysed for MYH9-USP6 fusion transcripts by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTSTwenty four of the 29 cases (83%) were positive for the USP6 gene rearrangement by interphase FISH. The 15 cases with RT-PCR showed the following results: 11 positive, one deletion and three negative for USP6 gene rearrangement. Of these 15 cases, eight (8/15) showed MYH9-USP6 fusion transcript by RT-PCR. Of these eight cases, seven were positive for USP6 gene rearrangement and one showed USP6 deletion by FISH.
CONCLUSIONSUSP6 gene rearrangement is a recurrent genetic event in NF. It is a valuable ancillary tool for the pathological diagnosis of these lesions.
Fasciitis ; genetics ; Gene Rearrangement ; Humans ; In Situ Hybridization, Fluorescence ; Interphase ; Proto-Oncogene Proteins ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Translocation, Genetic ; Ubiquitin Thiolesterase ; genetics

Result Analysis
Print
Save
E-mail