1.TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition.
Hongxiao SONG ; Qingfei XIAO ; Fengchao XU ; Qi WEI ; Fei WANG ; Guangyun TAN
Chinese Medical Journal 2023;136(7):799-806
BACKGROUND:
The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.
METHODS:
The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.
RESULTS:
We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.
CONCLUSIONS
The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Humans
;
Hepatitis B virus
;
DEAD Box Protein 58/metabolism*
;
RNA
;
Liver Neoplasms
;
Virus Replication
;
Tripartite Motif Proteins/genetics*
;
Transcription Factors
;
Ubiquitin-Protein Ligases/genetics*
2.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
3.Effect of ligustrazine on hypoxic-ischemic encephalopathy in neonatal rats by regulating autophagy through the PINK1/Parkin pathway.
Dan YANG ; Gang WANG ; Li-Jun YANG ; Ren-Ze DUAN ; Xian-Bing CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(7):751-758
OBJECTIVES:
To study the effect of ligustrazine injection on mitophagy in neonatal rats with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism.
METHODS:
Neonatal Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group with 8 rats, a model group with 12 rats, and a ligustrazine group with 12 rats. The rats in the model group and the ligustrazine group were used to establish a neonatal rat model of HIE by ligation of the left common carotid artery followed by hypoxia treatment, and blood vessels were exposed without any other treatment for the rats in the sham-operation group. The rats in the ligustrazine group were intraperitoneally injected with ligustrazine (20 mg/kg) daily after hypoxia-ischemia, and those in the sham-operation group and the model group were intraperitoneally injected with an equal volume of normal saline daily. Samples were collected after 7 days of treatment. Hematoxylin and eosin staining and Nissl staining were used to observe the pathological changes of neurons in brain tissue; immunohistochemical staining was used to observe the positive expression of PINK1 and Parkin in the hippocampus and cortex; TUNEL staining was used to measure neuronal apoptosis; Western blotting was used to measure the expression levels of the mitophagy pathway proteins PINK1 and Parkin and the autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and ubiquitin-binding protein (P62).
RESULTS:
Compared with the sham-operation group, the model group had a significant reduction in the number of neurons, an increase in intercellular space, loose arrangement, lipid vacuolization, and a reduction in Nissl bodies. The increased positive expression of PINK1 and Parkin, apoptosis rate of neurons, and protein expression levels of PINK1, Parkin, Beclin1 and LC3 (P<0.05) and the decreased protein expression level of P62 in the hippocampus were also observed in the model group (P<0.05). Compared with the model group, the ligustrazine group had a significant increase in the number of neurons with ordered arrangement and an increase in Nissl bodies, significant reductions in the positive expression of PINK1 and Parkin, the apoptosis rate of neurons, and the protein expression levels of PINK1, Parkin, Beclin1, and LC3 (P<0.05), and a significant increase in the protein expression level of P62 (P<0.05).
CONCLUSIONS
Ligustrazine can alleviate hypoxic-ischemic brain damage and inhibit neuronal apoptosis in neonatal rats to a certain extent, possibly by inhibiting PINK1/Parkin-mediated autophagy.
Rats
;
Animals
;
Hypoxia-Ischemia, Brain/metabolism*
;
Animals, Newborn
;
Rats, Sprague-Dawley
;
Beclin-1
;
Autophagy
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases/metabolism*
4.Multiomics and Multidimensional Testing for Efficacy Monitoring of Patients with Lymphoma.
Xin-Hua WANG ; Yan-Xin YANG ; Ying-Jun WANG ; Bao-Hong YUE ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2023;31(3):746-752
OBJECTIVE:
To explore the role of a new blood-based, multiomics and multidimensional method for evaluating the efficacy of patients with lymphoma.
METHODS:
10 ml peripheral blood was extracted from each patient, and the genomic copy number aberrations (CNA) and fragment size (FS) were evaluated by low-depth whole genome sequencing of cfDNA, and the level of a group of plasma tumor marker (PTM) were detected at the same time. The cancer efficacy score (CES) was obtained by standardized transformation of the value of above three numerical indexes, and the changes of CES before and after treatment were compared to evaluate the patient's response to the treatment regimen.
RESULTS:
A total of 35 patients' baseline data were collected, of which 23 cases (65.7%) had elevated CES values. 18 patients underwent the first time test. The results showed that the CES value of 9 patients with positive baseline CES decreased significantly at the first test, and the efficacy evaluation was PR, which was highly consistent with the imaging evaluation results of the same period. At the same time, the CNA variation spectrum of all patients were evaluated and it was found that 23 patients had partial amplification or deletion of chromosome fragments. The most common amplification site was 8q24.21, which contains important oncogenes such as MYC. The most common deletion sites were 1p36.32, 4q21.23, 6q21, 6q27, 14q32.33, and tumor suppressor-related genes such as PRDM1, ATG5, AIM1, FOXO3 and HACE1 were expressed in the above regions, so these deletions may be related to the occurrence and development of lymphoma.
CONCLUSION
With the advantages of more convenience, sensitivity and non-invasive, this multiomics and multidimensional efficacy detection method can evaluate the tumor load of patients with lymphoma at the molecular level, and make more accurate efficacy evaluation, which is expected to serve the clinic better.
Humans
;
Multiomics
;
Lymphoma/genetics*
;
Cell-Free Nucleic Acids
;
Genomics/methods*
;
DNA Copy Number Variations
;
Ubiquitin-Protein Ligases
5.Fibroma of tendon sheath: a clinicopathological and genetic analysis of 134 cases.
Jian CUI ; Ya LU ; Yan QIU ; Xin HE ; Min CHEN ; Hong Ying ZHANG
Chinese Journal of Pathology 2023;52(4):364-369
Objective: To investigate the clinicopathological features, immunophenotypes and molecular genetics of fibroma of tendon sheath (FTS). Methods: One hundred and thirty-four cases of FTS or tenosynovial fibroma diagnosed in the Department of Pathology, West China Hospital, Sichuan University, Chengdu, China from January 2008 to April 2019 were selected. The clinical and histologic features of these cases were retrospectively reviewed. Immunohistochemistry, fluorescence in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR) were performed on the above cases. Results: There were a total of 134 cases of FTS, including 67 males and 67 females. The patients' median age was 38 years (ranged from 2 to 85 years). The median tumor size was 1.8 cm (ranged from 0.1 to 6.8 cm). The most common site was the upper extremity (76/134, 57%). Follow-up data was available in 28 cases and there was no detectable recurrence. Classic FTS (114 cases) were well-defined and hypocellular. A few spindle-shaped fibroblasts were scattered in the dense collagenous sclerotic stroma. Characteristically elongated slit-like spaces or thin-walled vessels were observed. Most of cellular FTSs (20 cases) were well-defined and the area with increased cellularity of the spindle cells coexisted with classic FTS. There were occasional mitotic figures, but no atypical mitotic figures. Immunohistochemistry was performed in 8 cases of classic FTS and most cases were positive for SMA (5/8). Immunohistochemistry was also performed in 13 cases of cellular FTS and showed 100% positive rate for SMA. FISH was conducted on 20 cases of cellular FTS and 32 cases of classical FTS. USP6 gene rearrangement was found in 11/20 of cellular FTS. Among 12 cases of CFTS with nodular fasciitis (NF)-like morphological feature, 7 cases showed USP6 gene rearrangement. The rearrangement proportion of USP6 gene in cellular FTS without NF-like morphological features was 4/8. By contrast, 3% (1/32) of the classic FTS showed USP6 gene rearrangement. RT-PCR was performed in those cases with detected USP6 gene rearrangement and sufficient tissue samples for RT-PCR. The MYH9-USP6 fusion gene was detected in 1 case (1/8) of the cellular FTSs, while no target fusion partner was detected in the classic FTS. Conclusions: FTS is a relatively rare benign fibroblastic or myofibroblastic tumor. Our study and recent literature find that some of the classic FTS also show USP6 gene rearrangements, suggesting that classical FTS and cellular FTS are likely to be at different stages of the same disease (spectrum). FISH for USP6 gene rearrangement may be used as an important auxiliary diagnostic tool in distinguishing FTS from other tumors.
Male
;
Female
;
Humans
;
Gene Rearrangement
;
In Situ Hybridization, Fluorescence
;
Retrospective Studies
;
Fibroma/pathology*
;
Fasciitis/genetics*
;
Ubiquitin Thiolesterase
;
Tendons/pathology*
7.RITA selectively inhibits proliferation of BAP1-deficient cutaneous melanoma cells in vitro.
Wenhui SHI ; Xiaolian LIU ; Guiming ZHANG ; Linxuan YE ; Runhua ZHOU ; Yilei LI ; Le YU
Journal of Southern Medical University 2023;43(5):710-717
OBJECTIVE:
To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.
METHODS:
Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.
RESULTS:
The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).
CONCLUSION
Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.
Humans
;
Melanoma
;
Skin Neoplasms
;
Tumor Suppressor Protein p53
;
Apoptosis
;
Cell Division
;
Tumor Suppressor Proteins/genetics*
;
Ubiquitin Thiolesterase/genetics*
8.Clinical Study on the Relationship between Gene Mutation Profile and Prognosis in Pediatric Acute Lymphocyte Leukemia.
Yan CHEN ; Shan-Shan QI ; Li-Li DING ; Yu DU ; Na SONG ; Zhuo WANG ; Li YANG ; Ming SUN ; Hao XIONG
Journal of Experimental Hematology 2023;31(1):17-24
OBJECTIVE:
To analyze the gene mutation profile in children with acute lymphocyte leukemia (ALL) and to explore its prognostic significance.
METHODS:
Clinical data of 249 primary pediatric ALL patients diagnosed and treated in the Department of Hematological Oncology of Wuhan Children's Hospital from January 2018 to December 2021 were analyzed retrospectively. Next-generation sequencing (NGS) was used to obtain gene mutation data and analyze the correlation between it and the prognosis of children with ALL.
RESULTS:
227 (91.2%) were B-ALL, 22 (8.8%) were T-ALL among the 249 cases, and 178 (71.5%) were found to have gene mutations, of which 85 (34.1%) had ≥3 gene mutations. NRAS(23.7%), KRAS (22.9%),FLT3(11.2%), PTPN11(8.8%), CREBBP (7.2%), NOTCH1(6.4%) were the most frequently mutated genes, the mutations of KRAS, FLT3, PTPN11, CREBBP were mainly found in B-ALL, the mutations of NOTCH1 and FBXW7 were mainly found in T-ALL. The gene mutation incidence of T-ALL was significantly higher than that of B-ALL (χ2= 5.573,P<0.05) and were more likely to have co-mutations (P<0.05). The predicted 4-year EFS rate (47.9% vs 88.5%, P<0.001) and OS rate (53.8% vs 94.1%, P<0.001) in children with tp53 mutations were significantly lower than those of patients without tp53 mutations. Patients with NOTCH1 mutations had higher initial white blood cell count (128.64×109/L vs 8.23×109/L,P<0.001), and children with NOTCH1 mutations had a lower 4-year EFS rate than those of without mutations (71.5% vs 87.2%, P=0.037).
CONCLUSION
Genetic mutations are prevalent in childhood ALL and mutations in tp53 and NOTCH1 are strong predictors of adverse outcomes in childhood ALL, with NGS contributing to the discovery of genetic mutations and timely adjustment of treatment regimens.
Child
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Cell Cycle Proteins/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Retrospective Studies
;
Ubiquitin-Protein Ligases/genetics*
;
Prognosis
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
;
Mutation
;
Lymphocytes
9.MAGED4B Promotes Glioma Progression via Inactivation of the TNF-α-induced Apoptotic Pathway by Down-regulating TRIM27 Expression.
Can LIU ; Jun LIU ; Juntang SHAO ; Cheng HUANG ; Xingliang DAI ; Yujun SHEN ; Weishu HOU ; Yuxian SHEN ; Yongqiang YU
Neuroscience Bulletin 2023;39(2):273-291
MAGED4B belongs to the melanoma-associated antigen family; originally found in melanoma, it is expressed in various types of cancer, and is especially enriched in glioblastoma. However, the functional role and molecular mechanisms of MAGED4B in glioma are still unclear. In this study, we found that the MAGED4B level was higher in glioma tissue than that in non-cancer tissue, and the level was positively correlated with glioma grade, tumor diameter, Ki-67 level, and patient age. The patients with higher levels had a worse prognosis than those with lower MAGED4B levels. In glioma cells, MAGED4B overexpression promoted proliferation, invasion, and migration, as well as decreasing apoptosis and the chemosensitivity to cisplatin and temozolomide. On the contrary, MAGED4B knockdown in glioma cells inhibited proliferation, invasion, and migration, as well as increasing apoptosis and the chemosensitivity to cisplatin and temozolomide. MAGED4B knockdown also inhibited the growth of gliomas implanted into the rat brain. The interaction between MAGED4B and tripartite motif-containing 27 (TRIM27) in glioma cells was detected by co-immunoprecipitation assay, which showed that MAGED4B was co-localized with TRIM27. In addition, MAGED4B overexpression down-regulated the TRIM27 protein level, and this was blocked by carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), an inhibitor of the proteasome. On the contrary, MAGED4B knockdown up-regulated the TRIM27 level. Furthermore, MAGED4B overexpression increased TRIM27 ubiquitination in the presence of MG132. Accordingly, MAGED4B down-regulated the protein levels of genes downstream of ubiquitin-specific protease 7 (USP7) involved in the tumor necrosis factor-alpha (TNF-α)-induced apoptotic pathway. These findings indicate that MAGED4B promotes glioma growth via a TRIM27/USP7/receptor-interacting serine/threonine-protein kinase 1 (RIP1)-dependent TNF-α-induced apoptotic pathway, which suggests that MAGED4B is a potential target for glioma diagnosis and treatment.
Humans
;
Tumor Necrosis Factor-alpha
;
DNA-Binding Proteins/metabolism*
;
Ubiquitin-Specific Peptidase 7
;
Cisplatin
;
Temozolomide
;
Transcription Factors
;
Glioma
;
Cell Proliferation
;
Melanoma
;
Cell Line, Tumor
;
Apoptosis
;
Nuclear Proteins/genetics*
10.RGS12 represses oral squamous cell carcinoma by driving M1 polarization of tumor-associated macrophages via controlling ciliary MYCBP2/KIF2A signaling.
Gongsheng YUAN ; Shuting YANG ; Shuying YANG
International Journal of Oral Science 2023;15(1):11-11
Tumor-associated macrophages (TAMs) play crucial roles in tumor progression and immune responses. However, mechanisms of driving TAMs to antitumor function remain unknown. Here, transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12 (RGS12) regulates pathologic processes and immune-related pathways. Mice with RGS12 knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues, and extensive proliferation and invasion of oral cancer cells. RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length. Mechanistically, RGS12 associates with and activates MYC binding protein 2 (MYCBP2) to degrade the cilia protein kinesin family member 2A (KIF2A) in TAMs. Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.
Mice
;
Humans
;
Animals
;
Tumor-Associated Macrophages/metabolism*
;
Carcinoma, Squamous Cell
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms
;
GTP-Binding Proteins/metabolism*
;
Head and Neck Neoplasms
;
Ubiquitin-Protein Ligases/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
RGS Proteins/metabolism*
;
Kinesins/metabolism*
;
Repressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail