1.Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum.
Jiaocen GUO ; Li YANG ; Luting DAI ; Qingyun MA ; Jiaoyang YAN ; Qingyi XIE ; Yougen WU ; Haofu DAI ; Youxing ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):245-256
Eight previously undescribed lanostane triterpenoids, including five nortriterpenoids with 26 carbons, ganothenoids A-E (1-5), and three lanostanoids, ganothenoids F-H (6-8), along with 24 known ones (9-32), were isolated from the fruiting bodies of Ganodrma theaecolum. The structures of the novel compounds were elucidated using comprehensive spectroscopic methods, including electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) calculations. Compounds 1-32 were assessed for their neuroprotective effects against H2O2-induced damage in human neuroblastoma SH-SY5Y cells, as well as their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Compound 4 demonstrated the most potent neuroprotective activity against H2O2-induced oxidative stress by suppressing G0/G1 phase cell cycle arrest, reducing reactive oxygen species (ROS) levels, and inhibiting cell apoptosis through modulation of B-cell lymphoma 2 protein (Bcl-2) and Bcl-2 associated X-protein (Bax) protein expression. Compounds 26, 12, and 28 exhibited PTP1B inhibitory activities with IC50 values ranging from 13.92 to 56.94 μmol·L-1, while compound 12 alone displayed significant inhibitory effects on α-glucosidase with an IC50 value of 43.56 μmol·L-1. Additionally, enzyme kinetic analyses and molecular docking simulations were conducted for compounds 26 and 12 with PTP1B and α-glucosidase, respectively.
Humans
;
Fruiting Bodies, Fungal/chemistry*
;
Triterpenes/isolation & purification*
;
Neuroprotective Agents/isolation & purification*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Ganoderma/chemistry*
;
Apoptosis/drug effects*
;
Hypoglycemic Agents/isolation & purification*
;
Molecular Structure
;
alpha-Glucosidases/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress/drug effects*
;
Hydrogen Peroxide/toxicity*
;
Molecular Docking Simulation
2.Signature motif identification and enzymatic characterization of a protein tyrosine phosphatase in Metarhizium anisopliae.
Ze TAN ; Pei ZHU ; Zhenlun LI ; Shuiying YANG
Chinese Journal of Biotechnology 2025;41(9):3579-3588
Protein tyrosine phosphatases (PTPs, EC 3.1.3.48) are key regulators of cellular processes, with the catalytic activity attributed to the conserved motif (H/V)CX5R(S/T), where cysteine and arginine residues are critical. Previous studies revealed that alternative splicing of extracellular phosphatase mRNA precursors in Metarhizium anisopliae generated two distinct transcripts, with the longer sequence containing a novel HCPTPMLS motif resembling PTP signatures but lacking the arginine residue. To identify the novel signature motif and characterize its enzymatic properties, we heterologously expressed and purified both proteins in Pichia pastoris and comprehensively characterized their enzymatic properties. The protein containing the HCPTPMLS motif (designated as L-protein) exhibited the highest activity at pH 5.5 and a strong preference for pTyr substrates. Its phosphatase activity was inhibited by Ag+, Zn2+, Cu2+, molybdate, and tungstate, but enhanced by Ca2+ and EDTA. AcP101 (lacking HCPTPMLS) showed the maximal activity at pH 6.5 and a strong preference toward pNPP (P < 0.05), with the activity inhibited by NaF and tartrate, but enhanced by Mg2+ and Mn2+. Functional analysis confirmed that the L-protein retained the PTP activity despite the absence of arginine in its signature motif, while AcP101 functioned as an acid phosphatase. This study provides the first functional validation of an arginine-deficient PTP motif, expanding the definition of PTP signature motifs and offering new insights for phosphatase classification.
Metarhizium/genetics*
;
Protein Tyrosine Phosphatases/chemistry*
;
Amino Acid Motifs
;
Recombinant Proteins/biosynthesis*
;
Amino Acid Sequence
;
Pichia/metabolism*
;
Fungal Proteins/chemistry*
;
Substrate Specificity
;
Saccharomycetales
3.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis
4.Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy.
Yuan LU ; Yan-Li WANG ; Zhong-Jun SONG ; Xiao-Qing ZHU ; Chun-Hua LIU ; Ji-Yu CHEN ; Yong-Jun LI ; Yan HE
China Journal of Chinese Materia Medica 2022;47(18):5040-5051
Ultra-high-performance liquid chromatography-Q exactive orbitrap tandem mass spectrometry(UHPLC-QEOrbitrap-MS/MS) was used to explore the inhibitory effect and mechanism of ginkgo flavone aglycone(GA) combined with doxorubicin(DOX) on H22 cells. The effects of different concentrations of GA and DOX on the viability of H22 cells were investigated, and combination index(CI) was used to evaluate the effects. In the experiments, control(CON) group, DOX group, GA group, and combined GA and DOX(GDOX) group were constructed. Then the metabolomics strategy was employed to explore the metabolic markers that were significantly changed after combination therapy on the basis of single medication treatment, and by analyzing their biological significance, the effect and mechanism of the anti-tumor effect of GA combined with DOX were explained. The results revealed that when 30 μg·mL~(-1) GA and 0.5 μmol·L~(-1) DOX was determined as the co-administration concentration, the CI value was 0.808, indicating that the combination of GA and DOX had a synergistic anti-tumor effect. Metabolomics analysis identified 23 metabolic markers, including L-arginine, L-tyrosine and L-valine, mostly amino acids. Compared with the CON group, 22 and 17 metabolic markers were significantly down-regulated after DOX treatment and GA treatment, respectively. Compared with the DOX and GA groups, the treatment of GA combined with DOX further down-regulated the levels of these metabolic markers in liver cancer, which might contribute to the synergistic effect of the two. Five key metabolic pathways were found in pathway enrichment analysis, including glutathione metabolism, phenylalanine metabolism, arginine and proline metabolism, β-alanine metabolism, and valine, leucine and isoleucine degradation. These findings demonstrated that the combination of GA and DOX remarkably inhibited the viability of H22 cells and exerted a synergistic anti-tumor effect. The mechanism might be related to the influence of the energy supply of tumor cells by interfering with the metabolism of various amino acids.
Arginine/therapeutic use*
;
Doxorubicin/therapeutic use*
;
Flavones/therapeutic use*
;
Ginkgo biloba/chemistry*
;
Glutathione
;
Humans
;
Isoleucine/therapeutic use*
;
Leucine/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Metabolomics/methods*
;
Phenylalanine/therapeutic use*
;
Proline
;
Tandem Mass Spectrometry/methods*
;
Tyrosine/therapeutic use*
;
Valine/therapeutic use*
;
beta-Alanine/therapeutic use*
5.Characterization of highly active tyrosine ammonia lyase and its application in biosynthesis of p-coumaric acid.
Yawen HUANG ; Xiaolong JIANG ; Wujiu CHEN ; Guimin ZHANG ; Qinhong WANG
Chinese Journal of Biotechnology 2022;38(12):4553-4566
p-coumaric acid is one of the aromatic compounds that are widely used in food, cosmetics and medicine due to its properties of antibacterium, antioxidation and cardiovascular disease prevention. Tyrosine ammonia-lyase (TAL) catalyzes the deamination of tyrosine to p-coumaric acid. However, the lack of highly active and specific tyrosine ammonia lyase limits cost-effective microbial production of p-coumaric acid. In order to improve biosynthesis efficiency of p-coumaric acid, two tyrosine ammonia-lyases, namely Fc-TAL2 derived from Flavobacterium columnare and Fs-TAL derived from Flavobacterium suncheonense, were selected and characterized. The optimum temperature (55 ℃) and pH (9.5) for Fs-TAL and Fc-TAL2 are the same. Under optimal conditions, the specific enzyme activity of Fs-TAL and Fc-TAL2 were 82.47 U/mg and 13.27 U/mg, respectively. Structural simulation and alignment analysis showed that the orientation of the phenolic hydroxyl group of the conserved Y50 residue on the inner lid loop and its distance to the substrate were the main reasons accounting for the higher activity of Fs-TAL than that of Fc-TAL2. The higher activity and specificity of Fs-TAL were further confirmed via whole-cell catalysis using recombinant Escherichia coli, which could convert 10 g/L tyrosine into 6.2 g/L p-coumaric acid with a yield of 67.9%. This study provides alternative tyrosine ammonia-lyases and may facilitate the microbial production of p-coumaric acid and its derivatives.
Ammonia-Lyases/chemistry*
;
Coumaric Acids
;
Escherichia coli/genetics*
;
Tyrosine
6.Metabolic engineering study on biosynthesis of 4-hydroxybenzyl alcohol from L-tyrosine in Escherichia coli.
De-Hong XU ; Xiao-Qing BAO ; Xi-Wen WU ; Yu XING ; Chao-Yang TAN
China Journal of Chinese Materia Medica 2022;47(4):906-912
As an important active ingredient in the rare Chinese herb Gastrodiae Rhizoma and also the main precursor for gastrodin biosynthesis, 4-hydroxybenzyl alcohol has multiple pharmacological activities such as anti-inflammation, anti-tumor, and anti-cerebral ischemia. The pharmaceutical products with 4-hydroxybenzyl alcohol as the main component have been increasingly favored. At present, 4-hydroxybenzyl alcohol is mainly obtained by natural extraction and chemical synthesis, both of which, however, exhibit some shortcomings that limit the long-term application of 4-hydroxybenzyl alcohol. The wild and cultivated Gastrodia elata resources are limited. The chemical synthesis requires many steps, long time, and harsh reaction conditions. Besides, the resulting by-products are massive and three reaction wastes are difficult to treat. Therefore, how to artificially prepare 4-hydroxybenzyl alcohol with high yield and purity has become an urgent problem facing the medical researchers. Guided by the theory of microbial metabolic engineering, this study employed the genetic engineering technologies to introduce three genes ThiH, pchF and pchC into Escherichia coli for synthesizing 4-hydroxybenzyl alcohol with L-tyrosine. And the fermentation conditions of engineering strain for producing 4-hydroxybenzyl alcohol in shake flask were also discussed. The experimental results showed that under the conditions of 0.5 mmol·L~(-1) IPTG, 15 ℃ induction temperature, and 40 ℃ transformation temperature, M9 Y medium containing 200 mg·L~(-1) L-tyrosine could be transformed into(69±5)mg·L~(-1) 4-hydroxybenzyl alcohol, which has laid a foundation for producing 4-hydroxybenzyl alcohol economically and efficiently by further expanding the fermentation scale in the future.
Benzyl Alcohols
;
Escherichia coli/metabolism*
;
Gastrodia/chemistry*
;
Metabolic Engineering
;
Tyrosine/metabolism*
7.Study on the secondary metabolites of grasshopper-derived fungi Arthrinium sp. NF2410.
Wei LI ; Jing WEI ; Dao-Ying CHEN ; Mei-Jing WANG ; Yang SUN ; Fang-Wen JIAO ; Rui-Hua JIAO ; Ren-Xiang TAN ; Hui-Ming GE
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):957-960
Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.
Anhydrides/pharmacology*
;
Animals
;
Biological Products/pharmacology*
;
Enzyme Inhibitors/pharmacology*
;
Fungi/chemistry*
;
Grasshoppers/microbiology*
;
Molecular Structure
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors*
;
Secondary Metabolism
8.Flavonoids with PTP1B inhibition from Broussonetia papyrifera.
Yang LOU ; Shi-Yun SU ; Ya-Nan LI ; Chun LEI ; Jing-Ya LI ; Ai-Jun HOU
China Journal of Chinese Materia Medica 2019;44(1):88-94
Eleven flavonoids were isolated from the twigs of Broussonetia papyrifera by column chromatography over silica gel,ODS,MCI gel,and Sephadex LH-20,as well as RP-HPLC.Their structures were identified by spectroscopic methods including NMR,MS,UV,and IR as broupapyrin A(1),5,7,3',4'-tetrahydroxy-3-methoxy-8-geranylflavone(2),8-prenylquercetin-3-methyl ether(3),broussonol D(4),broussoflavonol B(5),uralenol(6),broussonol E(7),8-(1,1-dimethylallyl)-5'-(3-methylbut-2-enyl)-3',4',5,7-tetrahydroxyflanvonol(8),broussoflavonol E(9),4,2',4'-trihydroxychalcone(10),and butein(11).Compound 1 is a new isoprenylated flavonol.Compounds 3,6,10,and 11 were obtained from the genus Broussonetia for the first time,and 4 and 7 were firstly discovered in B.papyrifera.Compounds 1-5 and 7-9 showed significant inhibitory effects on PTP1 B with IC50 values ranging from(0.83±0.30) to(4.66±0.83) μmol·L-1.
Broussonetia
;
chemistry
;
Chromatography, High Pressure Liquid
;
Flavonoids
;
isolation & purification
;
pharmacology
;
Magnetic Resonance Spectroscopy
;
Phytochemicals
;
isolation & purification
;
pharmacology
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
9.Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008.
Xiao-Wei LUO ; Yun LIN ; Yong-Jun LU ; Xue-Feng ZHOU ; Yong-Hong LIU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):149-154
Two new isomeric modified tripeptides, aspergillamides C and D (compounds 1 and 2), together with fifteen known compounds (compounds 3-17), were obtained from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. The structures of the new compounds, including absolute configurations, were determined by extensive analyses of spectroscopic data (NMR, MS, UV, and IR) and comparisons between the calculated and experimental electronic circular dichroism (ECD) spectra. Butyrolactone I (compound 11) exhibited strong inhibitory effects against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) with the IC being 5.11 ± 0.53 μmol·L, and acted as a noncompetitive inhibitor based on kinetic analysis.
4-Butyrolactone
;
analogs & derivatives
;
chemistry
;
isolation & purification
;
pharmacology
;
Animals
;
Aspergillus
;
chemistry
;
Chemistry Techniques, Analytical
;
Dipeptides
;
chemistry
;
isolation & purification
;
pharmacology
;
Enzyme Inhibitors
;
chemistry
;
isolation & purification
;
pharmacology
;
Indoles
;
chemistry
;
isolation & purification
;
pharmacology
;
Molecular Structure
;
Mycobacterium tuberculosis
;
drug effects
;
Peptides
;
chemistry
;
isolation & purification
;
pharmacology
;
Polyketides
;
chemistry
;
isolation & purification
;
pharmacology
;
Porifera
;
microbiology
;
Protein Tyrosine Phosphatases
;
chemistry
10.Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii.
Xiang-Yu ZHANG ; Wei LI ; Jian WANG ; Ning LI ; Mao-Sheng CHENG ; Kazuo KOIKE
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):15-21
Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.
Enzyme Inhibitors
;
chemistry
;
metabolism
;
Fruit
;
chemistry
;
Humans
;
Kinetics
;
Methanol
;
chemistry
;
Molecular Docking Simulation
;
Molecular Structure
;
Plant Extracts
;
chemistry
;
Protein Binding
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
metabolism
;
Protein Tyrosine Phosphatases
;
antagonists & inhibitors
;
Rubus
;
chemistry
;
Structure-Activity Relationship
;
Triterpenes
;
chemistry
;
metabolism

Result Analysis
Print
Save
E-mail