1.O-GlcNAcylated YTHDF2 promotes bladder cancer progression by regulating the tumor suppressor gene PER1 via m6A modification.
Li WANG ; Da REN ; Zeqiang CAI ; Wentao HU ; Yuting CHEN ; Xuan ZHU
Journal of Central South University(Medical Sciences) 2025;50(5):827-839
OBJECTIVES:
Bladder cancer is a common malignancy with high incidence and poor prognosis. N6-methyladenosine (m6A) modification is widely involved in diverse physiological processes, among which the m6A recognition protein YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked N-acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (PER1), thereby promoting bladder cancer cell proliferation.
METHODS:
Expression of YTHDF2 in bladder cancer was predicted using The Cancer Genome Atlas (TCGA). Twenty paired bladder cancer and adjacent normal tissues were collected at the clinical level. Normal bladder epithelial cells (SV-HUC-1) and bladder cancer cell lines (T24, 5637, EJ-1, SW780, BIU-87) were examined by quantitative real-time PCR (RT-qPCR), Western blotting, and immunohistochemistry for expression of YTHDF2, PER1, and proliferation-related proteins [proliferating cell nuclear antigen (PCNA), minichromosome maintenance complex component 2 (MCM2), Cyclin D1]. YTHDF2 was silenced in 5637 and SW780 cells, and cell proliferation was assessed by Cell Counting Kit-8 (CCK-8), colony formation, and EdU assays. Bioinformatics was used to predict glycosylation sites of YTHDF2, and immunoprecipitation (IP) was performed to detect O-GlcNAc modification levels of YTHDF2 in tissues and cells. Bladder cancer cells were treated with DMSO, OSMI-1 (O-GlcNAc inhibitor), or Thiamet G (O-GlcNAc activator), followed by cycloheximide (CHX), to assess YTHDF2 ubiquitination by IP. YTHDF2 knockdown and Thiamet G treatment were further used to evaluate PER1 mRNA stability, PER1 m6A modification, and cell proliferation. TCGA was used to predict PER1 expression in tissues; SRAMP predicted potential PER1 m6A sites. Methylated RNA immunoprecipitation (MeRIP) assays measured PER1 m6A modification. Finally, the effects of knocking down YTHDF2 and PER1 on 5637 and SW780 cell proliferation were assessed.
RESULTS:
YTHDF2 expression was significantly upregulated in bladder cancer tissues compared with adjacent tissues (mRNA: 2.5-fold; protein: 2-fold), which O-GlcNAc modification levels increased 3.5-fold (P<0.001). YTHDF2 was upregulated in bladder cancer cell lines, and its knockdown suppressed cell viability (P<0.001), downregulated PCNA, MCM2, and CyclinD1 (all P<0.05), reduced colony numbers 3-fold (P<0.01), and inhibited proliferation. YTHDF2 exhibited elevated O-GlcNAc modification in cancer cells. OSMI-1 reduced YTHDF2 protein stability (P<0.01) and enhanced ubiquitination, while Thiamet G exerted opposite effects (P<0.001). Thiamet G reversed the proliferation-suppressive effects of YTHDF2 knockdown, promoting cell proliferation (P<0.01) and upregulating PCNA, MCM2, and CyclinD1 (all P<0.05). Mechanistically, YTHDF2 targeted PER1 via m6A recognition, promoting PER1 mRNA degradation. Rescue experiments showed that PER1 knockdown reversed the inhibitory effect of YTHDF2 knockdown on cell proliferation, upregulated PCNA, MCM2, and Cyclin D1 (all P<0.05), and promoted bladder cancer cell proliferation (P<0.001).
CONCLUSIONS
O-GlcNAc modification YTHDF2 promotes bladder cancer development by downregulating the tumor suppressor gene PER1 through m6A-mediated post-transcriptional regulation.
Humans
;
Urinary Bladder Neoplasms/metabolism*
;
RNA-Binding Proteins/genetics*
;
Cell Proliferation
;
Cell Line, Tumor
;
Disease Progression
;
Acetylglucosamine/metabolism*
;
Adenosine/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Genes, Tumor Suppressor
2.Knockdown of nuclear protein 1 delays pathological pro-gression of osteoarthritis through inhibiting chondrocyte ferroptosis.
Taiyang LIAO ; Zhenyuan MA ; Deren LIU ; Lei SHI ; Jun MAO ; Peimin WANG ; Liang DING
Journal of Zhejiang University. Medical sciences 2024;53(6):669-679
OBJECTIVES:
To investigate the effect of nuclear protein (Nupr) 1 on the pathological progression of osteoarthritis and its relationship with ferroptosis of chondrocytes.
METHODS:
Chondrocytes from mouse knees were divided into small interfering RNA (siRNA) control group, small interfering RNA targeting Nupr1 (siNupr1) group, siRNA control+IL-1β group (siRNA control interference for 24 h followed by 10 ng/mL IL-1β) and siNupr1+IL-1β group (siNupr1 interference for 24 h followed by 10 ng/mL IL-1β). The protein and mRNA expressions of Nupr1 were detected by Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation viabilities were measured using the cell counting kit-8 method. The levels of ferrous ions were detected by FerroOrange staining. Lipid peroxidation levels were detected by C11-BODIPY-591 fluorescence imaging. The contents of malondialdehyde (MDA) and glutathione (GSH) were detected by enzyme-linked immunosorbent assay. The protein expressions of acyl-CoA synthetase long-chain family (ACSL) 4, P53, glutathione peroxidase (GPX) 4 and solute carrier family 7 member 11 gene (SLC7A11) were detected by Western blotting. The osteoarthritis model was constructed by destabilization of the medial meniscus (DMM) surgery in 7-week-old male C57BL/6J mice. The mice were randomly divided into four groups with 10 animals in each group: sham surgery (Sham)+adeno-associated virus serotype 5 (AAV5)-short hairpin RNA (shRNA) control group, Sham+AAV5-shRNA control targeting Nupr1 (shNupr1) group, DMM+AAV5-shRNA control group, and DMM+AAV5-shNupr1 group. Hematoxylin and eosin staining and Safranin O-Fast Green staining were used to observe the morphological changes in cartilage tissue. The Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system was used to evaluate the degree of cartilage degeneration in mice. The mRNA expressions of matrix metallopeptidase (MMP) 13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 5, cyclooxy-genase (COX) 2, and GPX4 were detected by qRT-PCR.
RESULTS:
In vitro experiments showed that knocking down Nupr1 alleviated the decrease of chondrocyte proliferation activity induced by IL-1β, reduced iron accumulation in mouse chondrocytes, lowered lipid peroxidation, downregulated ACSL4 and P53 protein expression and upregulated GPX4 and SLC7A11 protein expression (all P<0.01), thereby inhibiting ferroptosis in mouse chondrocytes. Meanwhile, in vivo animal experiments demonstrated that knocking down Nupr1 delayed the degeneration of articular cartilage in osteoarthritis mice, improved the OARSI score, slowed down the degradation of the extracellular matrix in osteoarthritis cartilage, and reduced the expression of the key ferroptosis regulator GPX4 (all P<0.01).
CONCLUSIONS
Knockdown of Nupr1 can delay the pathological progression of osteoarthritis through inhibiting ferroptosis in mouse chondrocytes.
Animals
;
Ferroptosis
;
Mice
;
Chondrocytes/metabolism*
;
Osteoarthritis/pathology*
;
RNA, Small Interfering/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Interleukin-1beta/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Coenzyme A Ligases/genetics*
;
Tumor Suppressor Protein p53/metabolism*
;
Mice, Inbred C57BL
;
DNA-Binding Proteins
;
Neoplasm Proteins
;
Amino Acid Transport System y+
;
Nuclear Receptor Subfamily 1, Group D, Member 1
3.RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway.
Chaochao WANG ; Hao XUE ; Rongrong ZHAO ; Zhongzheng SUN ; Xiao GAO ; Yanhua QI ; Huizhi WANG ; Jianye XU ; Lin DENG ; Gang LI
Frontiers of Medicine 2023;17(1):143-155
Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
Humans
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
MicroRNAs/metabolism*
;
Glioma/genetics*
;
Genes, Tumor Suppressor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor
4.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Anaplastic Lymphoma Kinase/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
;
Cytoskeletal Proteins/genetics*
;
Lung/pathology*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Suppressor Protein p53/genetics*
5.Single-cell RNA sequencing reveals the transcriptomic landscape of kidneys in patients with ischemic acute kidney injury.
Rong TANG ; Peng JIN ; Chanjuan SHEN ; Wei LIN ; Leilin YU ; Xueling HU ; Ting MENG ; Linlin ZHANG ; Ling PENG ; Xiangcheng XIAO ; Peter EGGENHUIZEN ; Joshua D OOI ; Xueqin WU ; Xiang DING ; Yong ZHONG
Chinese Medical Journal 2023;136(10):1177-1187
BACKGROUND:
Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys.
METHODS:
In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining.
RESULTS:
15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI.
CONCLUSION
Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.
Humans
;
Mice
;
Animals
;
Transcriptome/genetics*
;
Ligands
;
Kidney/metabolism*
;
Acute Kidney Injury/metabolism*
;
Ischemia/metabolism*
;
Reperfusion Injury/metabolism*
;
Sequence Analysis, RNA
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Tumor Suppressor Proteins/metabolism*
6.The regulatory relationship between RagA and Nprl2 in Drosophila gut development.
Chunmei NIU ; Jianwen GUAN ; Guoqiang MENG ; Ying ZHOU ; Youheng WEI
Chinese Journal of Biotechnology 2023;39(4):1747-1758
The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.
Animals
;
Drosophila/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Mammals/metabolism*
;
Carrier Proteins
;
Tumor Suppressor Proteins/metabolism*
;
Drosophila Proteins/genetics*
7.Doublecortin-like kinase 1 activates Hippo pathway to promote migration, invasion and proliferation of pancreatic cancer cells.
Rui YAN ; Zi Wei LIANG ; He Shu LIU ; Yang GE ; Guang Yu AN
Chinese Journal of Oncology 2023;45(7):594-604
Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.
Humans
;
Doublecortin-Like Kinases
;
Hippo Signaling Pathway
;
Verteporfin/pharmacology*
;
Cell Line, Tumor
;
Protein Serine-Threonine Kinases/metabolism*
;
Pancreatic Neoplasms/pathology*
;
YAP-Signaling Proteins
;
Transcription Factors/metabolism*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Tumor Suppressor Proteins/genetics*
8.HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells.
Yongchen CHEN ; Jinyan WEN ; Dandan QI ; Xiaomei TONG ; Ningning LIU ; Xin YE
Chinese Journal of Biotechnology 2022;38(9):3501-3514
Lnc-HUR1 is an HBV-related long non-coding RNA, which can promote the proliferation of hepatoma cells and the occurrence and development of liver cancer. In this study we explored the effect of lnc-HUR1 on the apoptosis of hepatocellular carcinoma cells by taking the approach of immunoblotting, quantitative real time PCR, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and flow cytometry. We found that overexpression of lnc-HUR1 significantly reduced the activity of caspase3/7 and the cleavage of PARP-1, while knocking down of lnc-HUR1 significantly increased the activity of caspase3/7 and promoted the cleavage of PARP-1 in HepG2 cells treated with TGF-β, pentafluorouracil or staurosporine. Consistently, the data from Annexin-V/PI staining showed that overexpression of lnc-HUR1 inhibited apoptosis, while knockdown of lnc-HUR1 promoted apoptosis. Moreover, overexpression of lnc-HUR1 up-regulated the apoptosis inhibitor Bcl-2 and down-regulated the pro-apoptotic factor BAX at both RNA and protein levels. In the CCL4-induced acute liver injury mice model, the expression of Bcl-2 in the liver tissue of lnc-HUR1 transgenic mice was higher than that of the control mice. The data from ChIP assay indicated that lnc-HUR1 reduced the enrichment of p53 on Bcl-2 and BAX promoters. All these results indicated that lnc-HUR1 inhibited the apoptosis by promoting the expression of apoptosis inhibitor Bcl-2 and inhibiting the expression of apoptosis promoting factor BAX. Further studies showed that lnc-HUR1 regulated the transcription of Bcl-2 and BAX in HCT116 cells, but had no effect on the expression of Bcl-2 and BAX in HCT116 p53-/- cells, indicating that lnc-HUR1 regulates the transcription of Bcl-2 and BAX dependent upon the activity of p53. In conclusion, HBV upregulated lnc-HUR1 can inhibit the apoptosis of hepatoma cells. Lnc-HUR1 inhibits apoptosis by inhibiting the transcriptional activity of p53. These results suggest that lnc-HUR1 plays an important role in the occurrence and development of HBV-related hepatocellular carcinoma.
Animals
;
Annexins/pharmacology*
;
Apoptosis
;
Carcinoma, Hepatocellular/genetics*
;
Cell Proliferation
;
Hep G2 Cells
;
Hepatitis B virus/metabolism*
;
Humans
;
Liver Neoplasms/genetics*
;
Mice
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
RNA, Long Noncoding/metabolism*
;
Staurosporine/pharmacology*
;
Transforming Growth Factor beta/pharmacology*
;
Tumor Suppressor Protein p53/pharmacology*
;
bcl-2-Associated X Protein/pharmacology*
9.Differential Expression of Long Non-coding RNA Cancer Susceptibility Candidate 2 and Imprinted Gene H19 in Extrahepatic Cholangiocarcinoma.
Jia-Xing WANG ; Wen-Feng SHEN ; Rui XIAO ; Xue-Min FENG ; Rui-Ting MA ; Ze-Feng WANG ; Jian-Jun REN
Acta Academiae Medicinae Sinicae 2022;44(1):72-80
Objective To investigate the expression and the potential roles of long non-coding RNA(lncRNA)cancer susceptibility candidate 2(CASC2)and imprinted gene H19 in extrahepatic cholangiocarcinoma(ECC). Methods Four samples from patients with ECC were collected for high-throughput sequencing which was conducted to reveal the transcriptomic profiles of lncRNA CASC2 and H19.Bioinformatics tools were employed to predict the potential roles of the two genes.Another 22 ECC tissue samples and the cholangiocarcinoma cell lines(RBE,QBC939,HuH-28,and HuCCT1)with different degrees of differentiation were selected for validation.The para-carcinoma tissue and normal human intrahepatic biliary epithelial cell(HIBEC)were used as the control groups.The expression levels of lncRNA CASC2 and H19 in carcinoma tissue,para-carcinoma tissue,and cell lines were determined by real-time quantitative polymerase chain reaction(qRT-PCR).The correlation analysis was carried out for the clinical indicators of patients with the expression levels of the target genes. Results The two target genes showed significantly different expression between carcinoma tissue and para-carcinoma tissue(all P<0.05).Specifically,CASC2 had higher expression level in the carcinoma tissue than in the para-carcinoma tissue(t=1.262,P=0.025),whereas the expression of H19 showed an opposite trend(t=1.285,P=0.005).The expression levels of CASC2 in QBC939(t=8.114,P=0.015)and HuH-28(t=9.202,P=0.012)cells were significantly higher than that in the control group.The expression levels of H19 were significantly lower in RBE(t=-10.244,P<0.001),QBC939(t=-10.476,P<0.001),HuH-28(t=-19.798,P<0.001),and HuCCT1(t=-16.193,P=0.004)cells than in the control group.Bioinformatics analysis showed that CASC2 was mainly involved in the metabolic process and H19 in the development of multicellular organisms.Both CASC2 and H19 were related to catalytic activity.The expression level of lncRNA CASC2 was correlated with pathological differentiation(χ 2=6.222,P=0.022)and lymph node metastasis(χ2=5.455,P=0.020),and that of lncRNA H19 with pathological differentiation(χ2=1.174,P=0.029)and tumor size(χ2=-0.507,P=0.037). Conclusions In the case of ECC,lncRNA CASC2 and H19 have transcription disorders.lncRNA CASC2 is generally up-regulated in the carcinoma tissue,while H19 is down-regulated.Both genes have the potential to become new molecular markers for ECC.
Bile Duct Neoplasms/genetics*
;
Bile Ducts, Intrahepatic/metabolism*
;
Cholangiocarcinoma/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
RNA, Long Noncoding/genetics*
;
Tumor Suppressor Proteins/genetics*
10.ZNF750 facilitates carcinogenesis via promoting the expression of long non-coding RNA CYTOR and influences pharmacotherapy response in colon adenocarcinoma.
Lu XIA ; Hexin LIN ; Yanming ZHOU ; Jiabian LIAN
Journal of Zhejiang University. Science. B 2022;23(7):587-596
The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25-46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).
Adenocarcinoma/metabolism*
;
Carcinogenesis/genetics*
;
Colonic Neoplasms/metabolism*
;
Histone Demethylases/metabolism*
;
Humans
;
RNA, Long Noncoding/genetics*
;
Transcription Factors/metabolism*
;
Tumor Suppressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail