1.p53 regulates primordial follicle activation through the mTOR signaling pathway.
Huan LIN ; Tian-He REN ; Yun-Tong TONG ; Gui-Feng WU ; Tuo ZHANG ; Teng-Xiang CHEN ; Guo-Qiang XU
Acta Physiologica Sinica 2023;75(3):339-350
This paper aimed to investigate the role and potential mechanism of p53 on primordial follicle activation. Firstly, the p53 mRNA expression in the ovary of neonatal mice at 3, 5, 7 and 9 days post-partum (dpp) and the subcellular localization of p53 were detected to confirm the expression pattern of p53. Secondly, 2 dpp and 3 dpp ovaries were cultured with p53 inhibitor Pifithrin-μ (PFT-μ, 5 μmol/L) or equal volume of dimethyl sulfoxide for 3 days. The function of p53 in primordial follicle activation was determined by hematoxylin staining and whole ovary follicle counting. The proliferation of cell was detected by immunohistochemistry. The relative mRNA levels and protein levels of the key molecules involved in the classical pathways associated with the growing follicles were examined by immunofluorescence staining, Western blot and real-time PCR, respectively. Finally, rapamycin (RAP) was used to intervene the mTOR signaling pathway, and ovaries were divided into four groups: Control, RAP (1 μmol/L), PFT-μ (5 μmol/L), PFT-μ (5 μmol/L) + RAP (1 μmol/L) groups. The number of follicles in each group was determined by hematoxylin staining and whole ovary follicle counting. The results showed that the expression of p53 mRNA was decreased with the activation of primordial follicles in physiological condition. p53 was expressed in granulosa cells and oocyte cytoplasm of the primordial follicles and growing follicles, and the expression of p53 in the primordial follicles was higher than that in the growing follicles. Inhibition of p53 promoted follicle activation and reduced the primordial follicle reserve. Inhibition of p53 promoted the proliferation of the granulosa cells and oocytes. The mRNA and protein expression levels of key molecules in the PI3K/AKT signaling pathway including AKT, PTEN, and FOXO3a were not significantly changed after PFT-μ treatment, while the expression of RPS6/p-RPS6, the downstream effectors of the mTOR signaling pathway, was upregulated. Inhibition of both p53 and mTOR blocked p53 inhibition-induced primordial follicle activation. Collectively, these findings suggest that p53 may inhibit primordial follicle activation through the mTOR signaling pathway to maintain the primordial follicle reserve.
Female
;
Animals
;
Mice
;
Tumor Suppressor Protein p53/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Hematoxylin
;
Signal Transduction/physiology*
;
TOR Serine-Threonine Kinases
;
Sirolimus
;
RNA, Messenger
2.Effect of Angelica sinensis polysaccharide on expression of telomere, telomerase and P53 in mice aging hematopoietic stem cells.
Xian-Ping ZHANG ; Jun LIU ; Chun-Yan XU ; Qiang WEI ; Jing LI ; Lu WANG ; Jian-Wei WANG ; Ya-Ping WANG
China Journal of Chinese Materia Medica 2013;38(14):2354-2358
OBJECTIVETo observe the effect of Angelica sinensis polysaccharides (ASP) on the length of telomere, the activity of telomerase and the expression of P53 protein in mice hematopoietic stem cells (HSCs), and explore ASP's potential mechanism for regulating HSC aging.
METHODC57BL/6J mice were randomly divided into the normal group, the aging group and the intervention group. The aging group was radiated with X ray to establish the mice aging HSC model. The intervention group was orally administered with ASP during X-ray irradiation, while the normal group was orally administered with NS. Their HSCs were isolated by immunomagnetic beads. Cell cycles analysis and senescence-associated beta-galactosidase (SA-beta-Gal) staining were used to detect changes in aging HSCs. The expression of P53 was determined by western blot analysis. The length of telomere and the vitality of telomerase were analyzed by southern blot and TRAP-PCR, respectively.
RESULTCompared with the normal group, X-ray irradiation could significantly increase the cell ratio of in HSC G1 stage, rate of SA-beta-Gal positive cells and expression of P53 protein, and reduce the length of telomere and the vitality of telomerase. Compared with the aging group, ASP could significantly inhibit the cell ratio of in HSC G1 stage and the increase in the number of SA-beta-Gal positive cells, down-regulate the expression of P53 protein, and increase the length of telomere and the vitality of telomerase in HSCs.
CONCLUSIONASP could antagonize X-ray-induced aging of HSCs, which may be related to the increase in the length of telomere and the activity of telomerase, as well as the down-regulation of the expression of P53 protein.
Angelica sinensis ; chemistry ; Animals ; Cell Cycle ; drug effects ; physiology ; Cellular Senescence ; drug effects ; physiology ; Female ; Hematopoietic Stem Cells ; cytology ; drug effects ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Plant Extracts ; chemistry ; pharmacology ; Plants, Medicinal ; chemistry ; Polysaccharides ; isolation & purification ; pharmacology ; Telomerase ; biosynthesis ; metabolism ; Telomere ; drug effects ; metabolism ; Tumor Suppressor Protein p53 ; biosynthesis ; metabolism
3.Deacetylase SIRT1 and vascular endothelial function.
Zan WAN ; Wen YU ; Yun CHEN ; Yu-Tian DAI
National Journal of Andrology 2012;18(9):831-834
Silent information regulator factor 2-related enzyme 1 (Sirtuins 1, SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, which can deacetylate histone and non-histone proteins and other transcription factors, and is involved in the regulation of many physiological functions, including gene transcription, energy metabolism, cell senescence and oxidative stress. Recent studies show that through adjusting the activity of endothelial nitric oxide syntheses (eNOS), p53, forkhead box class O (FOXO) and nuclear factor kappa B (NF-kappaB), SIRT1 can protect the functions of vascular endothelia and nerves in a variety of pathological conditions. Therefore, SIRT1 may be used as a potential therapeutic target of these diseases, particularly erectile dysfunction, which are associated with endothelial dysfunction.
Endothelium, Vascular
;
physiology
;
Erectile Dysfunction
;
Forkhead Box Protein O1
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Male
;
NAD
;
metabolism
;
NF-kappa B
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Oxidative Stress
;
Sirtuin 1
;
physiology
;
Tumor Suppressor Protein p53
;
metabolism
4.Role of autophagy and apoptosis in tumor.
Jin-long TANG ; Hong-he ZHANG ; Mao-de LAI
Chinese Journal of Pathology 2012;41(8):573-576
Animals
;
Antineoplastic Agents
;
therapeutic use
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
metabolism
;
Autophagy
;
physiology
;
Beclin-1
;
Humans
;
Membrane Proteins
;
metabolism
;
Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
5.Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner.
Mi Eun LEE ; So Ra KIM ; Seungkoo LEE ; Yu Jin JUNG ; Sun Shim CHOI ; Woo Jin KIM ; Jeong A HAN
Experimental & Molecular Medicine 2012;44(9):536-544
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1.
Animals
;
Aspirin/administration & dosage
;
Catalysis
;
Caveolin 1/genetics/metabolism
;
Collagen Type I/genetics/metabolism
;
*Cyclooxygenase 2/metabolism/physiology
;
Cyclooxygenase 2 Inhibitors/*administration & dosage
;
Gene Expression Regulation
;
Mice
;
Nitrobenzenes/*administration & dosage
;
Pyrazoles/administration & dosage
;
Skin Aging/*drug effects/physiology
;
Sulfonamides/*administration & dosage
;
Tumor Suppressor Protein p53/genetics/metabolism
6.Effect of Notch1 on cell cycle, apoptosis and migration of laryngeal squamous cell carninoma cell line Hep-2.
Chinese Journal of Oncology 2012;34(2):104-109
OBJECTIVETo investigate the effect of Notch1 on cell cycle, apoptosis and migration of laryngeal squamous cell carcinoma cell line Hep-2 and explore its possible molecular mechanism.
METHODSHep-2 cells were divided into three groups: untreated group, empty vector group and Notch1 group. The effects of upregulation of Notch1 expression on cell proliferation, cell cycle and apoptosis were assessed by CCK-8 staining and flow cytometry, respectively, and effect of upregulation of Notch1 expression on cell migration of Hep-2 cells was studied using Boyden chamber assay, and further expression changes of genes related to cell proliferation, cell cycle, apoptosis and migration were detected by semi-quantitative RT-PCR and Western blotting.
RESULTSCompared with the untreated group and empty vector group, cell proliferation of Hep-2 in the Notch1 group was significantly inhibited (P < 0.05). The results of flow cytometry revealed that the percentage of cells at G0/G1 phase in the Notch1 group was (70.43 +/- 1.36)%, significantly higher than the (46.39 +/- 1.19)% in the untreated group or (48.41 +/- 1.18)% in the empty vector group, and there was a significant difference among the three groups (P = 0.000). In addition, the percentage of apoptotic cells in the Notch1 group was (22.46 +/- 0.90)%, significantly higher than that in the untreated group [(5.77 +/- 0.37)%] or empty vector group [(6.09 +/- 0.20)%], with a significant difference among the three groups (P = 0.000). The results of Boyden chamber assay demonstrated that the number of cells migrated through membrane in the Notch1 group was evidently lower than that in the untreated group and empty vector group. Moreover, the results of semi-quantitative RT-PCR and Western blotting showed that cell proliferation inhibition and cell cycle arrest were closely associated with downregulation of cyclin D1, cyclin E and CDK2 expressions and upregulation of p53 expression. In addition, upregulation of Notch1 expression mediated cell apoptosis was tightly related to upregulation of caspase 3/9 expressions and downregulation of Bcl-2, while the decrease of Hep-2 cell migration ability was obviously correlated with downregulation of MMP-2/-9 expressions.
CONCLUSIONSNotch1 signaling pathway may play a pivotal role in the occurrence and development of laryngeal squamous cell carcinoma. Further study may elucidate that Notchl signaling pathway may become a molecular target for therapy of laryngeal squamous cell carcinoma.
Apoptosis ; Carcinoma, Squamous Cell ; metabolism ; pathology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cyclin D1 ; metabolism ; Cyclin E ; metabolism ; Cyclin-Dependent Kinase 2 ; metabolism ; Humans ; Laryngeal Neoplasms ; metabolism ; pathology ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Oncogene Proteins ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Receptor, Notch1 ; metabolism ; physiology ; Signal Transduction ; Tumor Suppressor Protein p53 ; metabolism
7.Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway.
Kalpana MUJOO ; Lubov E NIKONOFF ; Vladislav G SHARIN ; Nathan S BRYAN ; Alexander Y KOTS ; Ferid MURAD
Protein & Cell 2012;3(7):535-544
Curcumin, an active ingredient of dietary spice used in curry, has been shown to exhibit anti-oxidant, anti-inflammatory and anti-proliferative properties. Using EB directed differentiation protocol of H-9 human embryonic stem (ES) cells; we evaluated the effect of curcumin (0-20 μmol/L) in enhancing such differentiation. Our results using real time PCR, western blotting and immunostaining demonstrated that curcumin significantly increased the gene expression and protein levels of cardiac specific transcription factor NKx2.5, cardiac troponin I, myosin heavy chain, and endothelial nitric oxide synthase during ES cell differentiation. Furthermore, an NO donor enhanced the curcumin-mediated induction of NKx2.5 and other cardiac specific proteins. Incubation of cells with curcumin led to a dose dependent increase in intracellular nitrite to the same extent as giving an authentic NO donor. Functional assay for second messenger(s) cyclic AMP (cAMP) and cyclic GMP (cGMP) revealed that continuous presence of curcumin in differentiated cells induced a decrease in the baseline levels of cAMP but it significantly elevated baseline contents of cGMP. Curcumin addition to a cell free assay significantly suppressed cAMP and cGMP degradation in the extracts while long term treatment of intact cells with curcumin increased the rates of cAMP and cGMP degradation suggesting that this might be due to direct suppression of some cyclic nucleotide-degrading enzyme (phosphodiesterase) by curcumin. These studies demonstrate that polyphenol curcumin may be involved in differentiation of ES cells partly due to manipulation of nitric oxide signaling.
Animals
;
Antioxidants
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Curcumin
;
pharmacology
;
Cyclic GMP
;
metabolism
;
Embryoid Bodies
;
drug effects
;
metabolism
;
physiology
;
Enzyme Activators
;
pharmacology
;
Gene Expression
;
drug effects
;
Guanylate Cyclase
;
genetics
;
metabolism
;
Homeobox Protein Nkx-2.5
;
Homeodomain Proteins
;
genetics
;
metabolism
;
Humans
;
Mice
;
Myosin Heavy Chains
;
genetics
;
metabolism
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Donors
;
pharmacology
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Nitroso Compounds
;
pharmacology
;
Pyrazoles
;
pharmacology
;
Pyridines
;
pharmacology
;
Second Messenger Systems
;
Transcription Factors
;
genetics
;
metabolism
;
Troponin
;
genetics
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
8.p41-Arc, a regulatory subunit of Arp2/3 complex, can induce premature senescence in the absence of p53 and Rb.
Un Jung YUN ; Sang Eun PARK ; Deug Y SHIN
Experimental & Molecular Medicine 2011;43(7):389-392
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-beta-galactosidase (SA-beta-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes.
Actin Cytoskeleton/metabolism
;
Actin-Related Protein 2-3 Complex/*metabolism
;
*Cell Aging
;
Cell Cycle Proteins/metabolism
;
Cell Line, Tumor
;
Cell Nucleus/metabolism
;
Fibroblasts/physiology
;
Humans
;
Recombinant Proteins/genetics/*metabolism
;
Retinoblastoma Protein/*deficiency/genetics
;
Tumor Suppressor Protein p53/*deficiency/genetics
9.E2FBP1 antagonizes the p16(INK4A)-Rb tumor suppressor machinery for growth suppression and cellular senescence by regulating promyelocytic leukemia protein stability.
Yayoi FUKUYO ; Akiko TAKAHASHI ; Eiji HARA ; Nobuo HORIKOSHI ; Tej K PANDITA ; Takuma NAKAJIMA
International Journal of Oral Science 2011;3(4):200-208
Cellular senescence is an irreversible cell cycle arrest triggered by the activation of oncogenes or mitogenic signaling as well as the enforced expression of tumor suppressors such as p53, p16(INK4A) and promyelocytic leukemia protein (PML) in normal cells. E2F-binding protein 1 (E2FBP1), a transcription regulator for E2F, induces PML reduction and suppresses the formation of PML-nuclear bodies, whereas the down-regulation of E2FBP1 provokes the PML-dependent premature senescence in human normal fibroblasts. Here we report that the depletion of E2FBP1 induces the accumulation of PML through the Ras-dependent activation of MAP kinase signaling. The cellular levels of p16(INK4A) and p53 are elevated during premature senescence induced by depletion of E2FBP1, and the depletion of p16(INK4A), but not p53 rescued senescent cells from growth arrest. Therefore, the premature senescence induced by E2FBP1 depletion is achieved through the p16(INK4A)-Rb pathway. Similar to human normal fibroblasts, the growth inhibition induced by E2FBP1 depletion is also observed in human tumor cells with intact p16(INK4A) and Rb. These results suggest that E2FBP1 functions as a critical antagonist to the p16(INK4A)-Rb tumor suppressor machinery by regulating PML stability.
Cell Line, Tumor
;
Cells, Cultured
;
Cellular Senescence
;
genetics
;
physiology
;
Cyclin-Dependent Kinase Inhibitor p16
;
antagonists & inhibitors
;
genetics
;
physiology
;
DNA-Binding Proteins
;
deficiency
;
genetics
;
physiology
;
Down-Regulation
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Intranuclear Inclusion Bodies
;
metabolism
;
MAP Kinase Signaling System
;
Nuclear Proteins
;
genetics
;
metabolism
;
physiology
;
Promyelocytic Leukemia Protein
;
Protein Isoforms
;
Protein Stability
;
RNA Interference
;
Retinoblastoma Protein
;
antagonists & inhibitors
;
genetics
;
physiology
;
Transcription Factors
;
deficiency
;
genetics
;
metabolism
;
physiology
;
Transfection
;
Tumor Suppressor Protein p53
;
physiology
;
Tumor Suppressor Proteins
;
genetics
;
metabolism
;
physiology
;
Ubiquitination
;
ras Proteins
;
metabolism
10.Relationship between the Akt-regulated direct p53 mitochondrial translocation and the resistance to cisplatin of ovarian cancer cells.
Ying ZHOU ; Shu-yu WANG ; Xiao-kui YANG ; Hong-mei WANG
Chinese Journal of Oncology 2011;33(2):97-100
OBJECTIVETo explore Akt-regulated direct p53 mitochondrial translocation in cisplatin-induced apoptosis in ovarian cancer cells and the relationship between this and chemoresistance in ovarian cancer.
METHODSChemosensitive ovarian cancer cell lines (OV2008 and A2780s) and chemoresistant cells (C13(*) and A2780cp) were treated with cisplatin and whole cell and mitochondrial p53 contents were determined by Western blot. The p53 accumulation in mitochondria was determined in purified mitochondrial fractions in cisplatin-sensitive and -resistant ovarian cancer cells. Akt1/2 siRNA were transfected into C13(*) cells. Cisplatin-induced apoptosis was measured by Hoechst staining and p53 translocation was determined by Western blot.
RESULTSCisplatin induced mitochondrial p53 accumulation and apoptosis in chemosensitive cells (P < 0.05), but not in resistant cells (P > 0.05). Over-expression of active Akt2 inhibited p53 directly translocate to mitochondria, and downregulation of Akt by Akt1/2 siRNA increased p53 mitochondrial accumulation and sensitize C13(*) cells to cisplatin treatment.
CONCLUSIONSCisplatin induces direct p53 mitochondrial accumulation in chemosensitive cells, and Akt confers resistance in ovarian cancer cells, in part, by regulating the direct action of p53 in mitochondrial death pathway.
Antineoplastic Agents ; metabolism ; Apoptosis ; drug effects ; Blotting, Western ; Cell Line, Tumor ; Cisplatin ; metabolism ; pharmacology ; Drug Resistance, Neoplasm ; drug effects ; Female ; Humans ; Mitochondria ; genetics ; Ovarian Neoplasms ; drug therapy ; Proto-Oncogene Proteins c-akt ; genetics ; physiology ; RNA, Small Interfering ; metabolism ; Tumor Suppressor Protein p53 ; genetics ; metabolism

Result Analysis
Print
Save
E-mail