1.Screening and obataining of aptamers for the blood group antigen-binding adhesin (BabA) to block Helicobacter pylori (H.pylori) colonization in the stomach of mice.
Yuan YUAN ; Weipeng LI ; Xiaojing ZHOU ; Weili SUN ; Xiaolei TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):793-800
Objective To explore the aptamer specific binding blood group antigen-binding adhesin (BabA) of Helicobacter pylori (H.pylori) for blocking of H.pylori adhering host cell. Methods H.pylori strain was cultured and its genome was extracted as templates to amplify the BabA gene by PCR with designed primers. The BabA gene obtained was cloned and constructed into prokaryotic expression plasmid, which was induced by isopropyl beta-D-galactoside (IPTG) and purified as target. The single stranded DNA (ssDNA) aptamers that specifically bind to BabA were screened by SELEX. Enzyme-linked oligonucleotide assay (ELONA) was used to detect and evaluate the characteristics of candidate aptamers. The blocking effect of ssDNA aptamers on H.pylori adhesion was subsequently verified by flow cytometry and colony counting at the cell level in vitro and in mouse model of infection, respectively. Meanwhile, the levels of cytokines, interleukin 6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), IL-10 and IL-4 in the homogenate of mouse gastric mucosa cells were detected by ELISA. Results The genome of H.pylori ATCC 43504 strains was extracted and the recombinant plasmid pET32a-BabA was constructed. After induction and purification, the relative molecular mass (Mr) of the recombinant BabA protein was about 39 000. The amino acid sequence of recombinent protein was consistent with BabA protein by peptide mass fingerprint (PMF). Five candidate aptamers were selected to bind to the above recombinent BabA protein by SELEX. The aptamers A10, A30 and A42 identified the same site, while A3, A16 and the above three aptamers identified different sites respectively. The aptamer significantly blocked the adhesion of H.pylori in vitro. Animal model experiments showed that the aptamers can block the colonization of H.pylori in gastric mucosa by intragastric injection and reduce the inflammatory response. The levels of IL-4, IL-6, IL-8 and TNF-α in gastric mucosal homogenates in the model group with aptamer treatment were lower than that of model group without treatment. Conclusion Aptamers can reduce the colonization of H.pylori in gastric mucosa via binding BabA to block the adhesion between H.pylori and gastric mucosal epithelial cells.
Animals
;
Mice
;
Helicobacter pylori/genetics*
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Tumor Necrosis Factor-alpha
;
Stomach
;
Oligonucleotides
;
Adhesins, Bacterial/genetics*
;
Blood Group Antigens
2.Effect of Polygonati Rhizoma in improving pyroptosis injury of diabetic macroangiopathy via NLRP3/caspase-1/GSDMD pathway.
Xin-Ying FU ; Tian-Song SUN ; Cong-Xu ZHU ; Shi-da KUANG ; Jun TAN ; Dan CHEN ; Qing-Hu HE ; Lu-Mei LIU
China Journal of Chinese Materia Medica 2023;48(24):6702-6710
This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1β, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.
Animals
;
Rats
;
Caspase 1/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-18
;
Blood Glucose
;
Pyroptosis
;
Tumor Necrosis Factor-alpha
;
Diabetes Complications
;
Vascular Diseases
;
Inflammasomes
;
Cholesterol
;
Lipids
;
Diabetes Mellitus
3.Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway.
Lian-Zhi CHENG ; Jia-Mei ZHOU ; Jun-Long MA ; Fan-Jing WANG ; Kai CHENG ; Qian CHEN ; Hui-Lun YUAN ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2022;47(9):2533-2540
Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1β, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.
Animals
;
Berberine Alkaloids
;
Blood Glucose/metabolism*
;
Diabetes Mellitus
;
Diabetic Neuropathies/genetics*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Microglia
;
Neuralgia/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Spinal Cord/metabolism*
;
Streptozocin/therapeutic use*
;
Tumor Necrosis Factor-alpha/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
4.Activity of Codonopsis canescens against rheumatoid arthritis based on TLRs/MAPKs/NF-κB signaling pathways and its mechanism.
Yu-Jie WANG ; Xiao-Yu ZHONG ; Xin-Hong WANG ; Yuan-Han ZHONG ; Lin LIU ; Fang-Yuan LIU ; Jin-Xiang ZENG ; Ji-Xiao ZHU ; Xiao-Lang DU ; Min LI ; Gang REN ; Guo-Yue ZHONG ; Xiao-Min WANG
China Journal of Chinese Materia Medica 2022;47(22):6164-6174
This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1β, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.
Animals
;
Cattle
;
Male
;
Rats
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Body Weight
;
Codonopsis/chemistry*
;
Interleukin-6/blood*
;
NF-kappa B/genetics*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Plant Extracts/therapeutic use*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/pharmacology*
5.Cathepsin B in hepatic Kupffer cells regulates activation of TLR4-independent inflammatory pathways in mice with lipopolysaccharide-induced sepsis.
Panpan FENG ; Wei ZHU ; Nan CHEN ; Peizhi LI ; Kun HE ; Jianping GONG
Journal of Southern Medical University 2018;38(12):1465-1471
OBJECTIVE:
To investigate the role of cathepsin B in hepatic Kupffer cells (KCs) in activating Toll-like receptor 4(TLR- 4)-independent inflammatory pathways in mice with lipopolysaccharide (LPS)-induced sepsis.
METHODS:
Eighteen wild-type (WT) mice and 18 TLR4-knockout (TLR4) mice were both divided into 3 groups for intraperitoneal injections of a lethal dose (54 mg/kg) of LPS, LPS and CA-074(a cathepsin B inhibitor), or normal saline, and the survival of the mice were observed. Another 36 WT mice and 36 TLR4mice were also divided into 3 groups and subjected to intraperitoneal injections of normal saline, 20 mg/kg LPS, or LPS with CA-074 pretreatment.After the treatments, KCs were collected from the mice for assessing the protein level and activity of cathepsin B.The histopathological changes of the liver were observed with HE staining, and the serum levels of IL-1α, IL-1β, TNF-α and IL-18 were detected.
RESULTS:
Compared with the WT mice,TLR4mice receiving the lethal dose of LPS had significantly longer survival time (up to 84 h) after the injection,but were still unable to fully resist LPS challenge.CA-074 pretreatment prolonged the survival time of WT mice and TLR4mice to 60 h and 132 h,respectively.In the mouse models of sepsis,20 mg/kg LPS induced significantly enhanced activity of cathepsin B without affecting its expression level in the KCs (<0.05) and increased the serum levels of the inflammatory cytokines.CA-074 pretreatment of the mice obviously lessened the detrimental effects of LPS in TLR4mice by significantly lowering cathepsin B activity in the KCs,alleviating hepatocyte apoptosis and reducing the serum levels of inflammatory cytokines.
CONCLUSIONS
Cathepsin B plays an important role in activating TLR4-independent inflammatory pathways in mice with LPS-induced sepsis.
Animals
;
Cathepsin B
;
antagonists & inhibitors
;
physiology
;
Dipeptides
;
pharmacology
;
Gene Knockout Techniques
;
Hepatocytes
;
Inflammation
;
metabolism
;
Interleukin-18
;
blood
;
Interleukin-1alpha
;
blood
;
Interleukin-1beta
;
blood
;
Kupffer Cells
;
metabolism
;
Lipopolysaccharides
;
Liver
;
pathology
;
Mice
;
Sepsis
;
etiology
;
metabolism
;
Toll-Like Receptor 4
;
genetics
;
Tumor Necrosis Factor-alpha
;
blood
6.TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after polysaccharides administration.
Tingting LIU ; Lingxiao WANG ; Xiaohui YANG ; Zhiqing YAO ; Huizhen CAI
Journal of Zhejiang University. Medical sciences 2018;47(1):35-40
OBJECTIVE:
: To investigate the effect of polysaccharides (LBPs) on TLR/NF-κB independent pathway and serum tumor necrosis factor (TNF-α) level in diabetic MyD88-knockout mice.
METHODS:
: Diabetes was induced by feeding high-fat/high-sugar diet and injection of low-dose streptozotocin in MyD88-knockout mice. The diabetic mice were randomly divided into model group, positive control group and LBPs group. The expressions of TRAM, TRIF, TRAF6, RIP1 and TNF-α mRNA and proteins in mouse peritoneal macrophages were detected by real-time RT-PCR and Western blotting after LBPs treatment for 3 month. Serum TNF-α was determined with ELISA kit.
RESULTS:
: Real time RT-PCR showed that compared with model group, the relative expressions of and mRNA in macrophages of LBPs group were significantly decreased and expression of was significantly increased (all <0.05). Expression of TRAM, TRIF, TRAF6, RIP1 and TNF-α proteins as well as serum TNF-α level had no significant difference between LBPs group and model group (all >0.05).
CONCLUSIONS
: LBPs may not inhibit serum TNF-α level through TLR/NF-κB independent pathway.
Animals
;
Diabetes Mellitus, Experimental
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Macrophages, Peritoneal
;
drug effects
;
Mice
;
Mice, Knockout
;
Myeloid Differentiation Factor 88
;
genetics
;
NF-kappa B
;
genetics
;
Random Allocation
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
blood
;
metabolism
7.Anti-hyperuricemic and anti-inflammatory actions of vaticaffinol isolated from Dipterocarpus alatus in hyperuricemic mice.
Yu-Sheng CHEN ; Chao-Jun CHEN ; Wei YAN ; Hui-Ming GE ; Ling-Dong KONG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(5):330-340
The present study was designed to examine the anti-hyperuricemic and anti-inflammatory effects and possible mechanisms of vaticaffinol, a resveratrol tetramer isolated from ethanol extracts of Dipterocarpus alatus, in oxonate-induced hyperuricemic mice. At 1 h after 250 mg·kg potassium oxonate was given, vaticaffinol at 20, 40, and 60 mg·kg was intragastrically administered to hyperuricemic mice once daily for seven consecutive days. Vaticaffinol significantly decreased serum uric acid levels and improved kidney function in hyperuricemic mice. It inhibited hepatic activity of xanthine dehydrogenase (XDH) and xanthine oxidase (XOD), regulated renal mRNA and protein levels of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1), organic cation transporter 1 (OCT1), OCT2, organic cation/carnitine transporter 1 (OCTN1), and OCTN2 in hyperuricemic mice. Moreover, vaticaffinol markedly down-regulated renal protein levels of NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like (ASC), and Caspase-1, resulting in the reduction of interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α (TNF-α) levels in this animal model. Additionally, HPLC and LC-MS analyses clearly testified the presence of vaticaffinol in the crude extract. These results suggest that vaticaffinol may be useful for the prevention and treatment of hyperuricemia with kidney inflammation.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Dipterocarpaceae
;
chemistry
;
Humans
;
Hyperuricemia
;
blood
;
drug therapy
;
immunology
;
Interleukin-18
;
genetics
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Interleukin-6
;
genetics
;
immunology
;
Kidney
;
drug effects
;
immunology
;
Male
;
Mice
;
Organic Anion Transport Protein 1
;
genetics
;
immunology
;
Plant Extracts
;
administration & dosage
;
Stilbenes
;
administration & dosage
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Uric Acid
;
blood
8.Associations between Single Nucleotide Polymorphisms of High Mobility Group Box 1 Protein and Clinical Outcomes in Korean Sepsis Patients.
Kwangha LEE ; Youjin CHANG ; Kyuyoung SONG ; Yun Young PARK ; Jin Won HUH ; Sang Bum HONG ; Chae Man LIM ; Younsuck KOH
Yonsei Medical Journal 2016;57(1):111-117
PURPOSE: High mobility group box 1 (HMGB1) plays a central role in the pathogenesis of sepsis and multiple organ dysfunction syndromes. We investigated the associations of a single nucleotide polymorphism (SNP; rs1045411) in HMGB1 with various clinical parameters, severity, and prognosis in patients with sepsis, severe sepsis, or septic shock. MATERIALS AND METHODS: We enrolled 212 adult patients followed for 28 days. All patients were genotyped for rs1045411, and the serum levels of HMGB1 and several cytokines were measured. RESULTS: The proportions of patients according to genotype were GG (71.2%), GA (26.4%), and AA (2.4%). Among patients with chronic lung disease comorbidity, patients with a variant A allele had higher positive blood culture rates and higher levels of various cytokines [interleukin (IL)-1beta, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha] than those with the GG genotype. In the analysis of those with diabetes as a comorbidity, patients with a variant A allele had higher blood culture and Gram-negative culture rates than those with GG genotypes; these patients also had a higher levels of IL-17. In the analysis of those with sepsis caused by a respiratory tract infection, patients with a variant A allele had higher levels of IL-10 and IL-17 (all p<0.05). This polymorphism had no significant impact on patient survival. CONCLUSION: The variant A allele of rs1045411 appears to be associated with a more severe inflammatory response than the GG genotype under specific conditions.
Adult
;
Aged
;
Alleles
;
Asian Continental Ancestry Group/genetics
;
China/epidemiology
;
Cytokines/*blood/*genetics
;
Female
;
Genotype
;
HMGB1 Protein/blood/*genetics
;
Humans
;
Interleukin-10/genetics
;
Interleukin-17/genetics
;
Interleukin-6/blood
;
Male
;
Middle Aged
;
Polymorphism, Genetic/*genetics
;
Polymorphism, Single Nucleotide/*genetics
;
Prognosis
;
Republic of Korea
;
Sepsis/immunology/*metabolism/mortality
;
Shock, Septic/immunology/*metabolism/mortality
;
Survival
;
Tumor Necrosis Factor-alpha/genetics
9.The protective effect of bone marrow mesenchymal stem cells carrying antioxidant gene superoxide dismutase on paraquat lung injury in mice.
Hong LIU ; Yingwei DING ; Yuehui HOU ; Guangju ZHAO ; Yang LU ; Xiao CHEN ; Qiqi CAI ; Guangliang HONG ; Qiaomeng QIU ; Zhongqiu LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2016;34(1):1-7
OBJECTIVETo explore the possible mechanism and protective effect of BMSCs (bone mesenchymal stem cells) carrying superoxide dismutase (SOD) gene on mice with paraquat-induced acute lung injury.
METHODSTo establish the cell line of BMSCs bringing SOD gene, lentiviral vector bringing SOD gene was built and co-cultured with BMSCs. A total of 100 BALB/c mice were randomly divided into five groups, namely Control group, poisoning group (PQ group) , BMSCs therapy group (BMSC group) , BMSCs-Cherry therapy group (BMSC-Cherry group) , BMSCs-SOD therapy group (BMSC-SOD group) . PQ poisoning model was produced by stomach lavaged once with 1 ml of 25 mg/kg PQ solution, and the equal volume of normal saline (NS) was given to Control group mice instead of PQ. The corresponding BMSCs therapy cell lines were delivered to mice through the tail vein of mice 4h after PQ treatment.Five mice of each group were sacrificed 3 d, 7 d, 14 d and 21 days after corresponding BMSCs therapy cell lines administration, and lung tissues of mice were taken to make sections for histological analysis. The serum levels of glutathione (GSH) , malondialdehyde (MDA) , SOD, and the levels of transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) in lung tissue were determined. The level of SOD was assayed by Westen-blot.
RESULTSCompared with Control group, the early (3 days) levels of SOD protein in lung tissue of PQ group obviously decreased, and the late (21 days) levels of SOD obviously increased, while in therapy groups, that was higher than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Compared with Control group, the levels of plasma GSH and SOD of PQ group and each therapy group wae significantly lower than those in Control group, while in therapy groups, those were higher than those of PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) .Compared with Control group, the level of plasma MDA, TNF-α and TGF-β in PQ group and therapy groups were significantly higher, while in therapy groups, that was lower than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Lung biopsy showed that, the degree of lung tissue damage in each therapy group obviously reduced.
CONCLUSIONSOD is the key factor of the removal of reactive oxygen species (ROS) in cells, that can obviously inhibit the oxidative stress damage and the apoptosis induced by PQ, thus significantly increasing alveolar epithelial cell ability to fight outside harmful environment.
Acute Lung Injury ; chemically induced ; therapy ; Animals ; Antioxidants ; metabolism ; Cell Line ; Glutathione ; blood ; Lung ; pathology ; Malondialdehyde ; blood ; Mesenchymal Stem Cell Transplantation ; Mice ; Mice, Inbred BALB C ; Oxidative Stress ; Paraquat ; poisoning ; Superoxide Dismutase ; blood ; genetics ; Transforming Growth Factor beta ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
10.Prophylactic effects of alkaloids from Ba lotus seeds on L-NNA-induced hypertension in mice.
Peng SUN ; Kai ZHU ; Cun WANG ; Wei-Wei LIU ; De-Guang PENG ; Xin ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2016;14(11):835-843
Alkaloids from Ba lotus seeds (ABLS) are a kind of important functional compounds in lotus seeds. The present study was designed to determine its hypertension prophylactic effects in the L-NNA-induced mouse hypertension model. The mice were treated with ABLS, the serum and tissues levels of NO, MDA, ET-1, VEGF, and CGRP were determined using the experimental kits, the mRNA levels of various genes in the heart muscle and blood vessel tissues were further determined by RT-PCR assay. ABLS could reduce the systolic blood pressure (SBP), mean blood pressure (MBP), and diastolic blood pressure (DBP), compared to that of the model control group. After ABLS treatment, the NO (nitric oxide) contents in serum, heart, liver, kidney and stomach of the mice were higher than that of the control mice, but the MDA (malonaldehyde) contents were lower than that of the control mice. The serum levels of ET-1 (endothelin-1), VEGF (vascular endothelial growth factor) were decreased after ABLS treatment, but CGRP (calcium gene related peptide) level was increased. The ABLS treated mice had higher mRNA expressions of HO-1, nNOS, and eNOS and lower expressions of ADM, RAMP2, IL-1β, TNF-α, and iNOS than the control mice. Higher concentration of ABLS had greater prophylactic effects, which were close to that of the hypertension drug captopril. These results indicated the hypertension prophylactic effects of ABLS could be further explored as novel medicine or functional food in the future.
Alkaloids
;
administration & dosage
;
Animals
;
Blood Pressure
;
drug effects
;
Disease Models, Animal
;
Humans
;
Hypertension
;
chemically induced
;
drug therapy
;
metabolism
;
physiopathology
;
Interleukin-1beta
;
genetics
;
metabolism
;
Male
;
Mice
;
Mice, Inbred ICR
;
Nitroarginine
;
Nymphaeaceae
;
chemistry
;
Seeds
;
chemistry
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail