1.Effect of transcutaneous electrical acupoint stimulation on postoperative pain in patients undergoing modified radical mastectomy for breast cancer.
Li YAN ; Bin SUN ; Meiyan ZHOU ; Yan ZHANG ; Fei GAO ; Qianwen ZHAO ; Liwei WANG
Chinese Acupuncture & Moxibustion 2025;45(2):162-166
OBJECTIVE:
To observe the effect of transcutaneous electrical acupoint stimulation (TEAS) on postoperative pain in patients undergoing modified radical mastectomy for breast cancer.
METHODS:
A total of 140 female patients scheduled for unilateral modified radical mastectomy for breast cancer undergoing general anesthesia were randomized into a TEAS group (70 cases) and a sham TEAS group (70 cases, 2 cases dropped out). Patients in both groups received TEAS or sham TEAS at bilateral Neiguan (PC6), Zusanli (ST36), and Danzhong (CV17), respectively, from 30 min before anesthesia induction until the end of surgery, and on 1st, 2nd, and 3rd days after surgery for 30 min a time, once a day. On 1st, 2nd, and 3rd days after surgery, the pain visual analogue scale (VAS) score was observed; on 3, 6, 12 months after surgery, the incidence rate of chronic pain was observed; before surgery, and on 1st, 3rd, and 7th days after surgery, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 were detected; the number of analgesia pump press, rescue analgesia, and the occurrence of adverse reaction after surgery were recorded in the two groups.
RESULTS:
In the TEAS group, the VAS scores on 1st and 2nd days after surgery, and the incidence rates of chronic pain on 3 and 6 months after surgery were lower than those in the sham TEAS group (P<0.05). On 1st, 3rd, and 7th days after surgery, the serum levels of TNF-α, IL-6, and IL-10 were increased compared with those before surgery in both groups (P<0.05, P<0.01); the above indexes in the TEAS group were lower than those in the sham TEAS group (P<0.05). The number of analgesia pump press and the incidence rate of rescue analgesia after surgery in the TEAS group were lower than those in the sham TEAS group (P<0.05). There was no statistically significant difference in the incidence of adverse reactions after surgery between the two groups (P>0.05).
CONCLUSION
TEAS can effectively improve both the postoperative acute pain and chronic pain in patients undergoing modified radical mastectomy for breast cancer, the mechanism may relate to inhibiting the inflammatory reaction.
Humans
;
Female
;
Acupuncture Points
;
Pain, Postoperative/blood*
;
Middle Aged
;
Breast Neoplasms/surgery*
;
Adult
;
Transcutaneous Electric Nerve Stimulation
;
Mastectomy, Modified Radical/adverse effects*
;
Interleukin-6/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
Interleukin-10/blood*
;
Aged
2.Effect of perioperative transcutaneous electrical acupoint stimulation on postoperative fatigue syndrome in elderly patients.
Jing CHENG ; Shiyi HU ; Yuru FANG ; Guixia CAO ; Tao JIANG ; Yiqiao WANG
Chinese Acupuncture & Moxibustion 2025;45(8):1071-1077
OBJECTIVE:
To observe the effect of perioperative transcutaneous electrical acupoint stimulation (TEAS) on postoperative fatigue syndrome (POFS) in elderly patients undergoing laparoscopic radical gastrectomy.
METHODS:
A total of 80 elderly patients scheduled for laparoscopic radical gastrectomy were randomized into a TEAS group and a sham TEAS group, 40 cases in each one. In the TEAS group, TEAS intervention was applied at bilateral Hegu (LI4), Neiguan (PC6), Zusanli (ST36) and Sanyinjiao (SP6) from 30 min before anesthesia induction until surgery completion, and at 18:00 on 1st, 2nd and 3rd days after surgery, once a day, 30 min a time. In the sham TEAS group, the same acupoints were selected and connected to the electroacupuncture device at the same time, without electrical stimulation. One day before surgery and 1, 3, 7 days after surgery, the 10-item short form of identity consequence fatigue scale (ICFS-10) score was observed, and the POFS incidence rate of 1, 3, 7 days after surgery was assessed in the two groups. One day before surgery, surgery completion, and 1, 3 days after surgery, the serum levels of superoxide dismutase (SOD), β-endorphin (β-EP) were detected; 1 day before surgery and 1, 3, 7 days after surgery, the serum level of tumor necrosis factor-α (TNF-α) was detected in the two groups. The pain visual analog scale (VAS) score was observed at 24, 48 and 72 h after surgery; the intraoperative dosage of propofol and remifentanil, and the incidence rate of postoperative nausea and vomiting, itching, respiratory depression were recorded in the two groups.
RESULTS:
In the TEAS group, on 1, 3, 7 days after surgery, except for the scores of item 8-10, the item scores and the total scores of ICFS-10 were lower than those in the sham TEAS group (P<0.001); on 3 and 7 days after surgery, the POFS incidence rates were lower than those in the sham TEAS group (P<0.05). In the TEAS group, on 1 and 3 days after surgery, the serum levels of SOD were higher than those in the sham TEAS group (P<0.05, P<0.01); at surgery completion, and on 1, 3 days after surgery, the serum levels of β-EP were higher than those in the sham TEAS group (P<0.001, P<0.01); on 1, 3, 7 days after surgery, the serum levels of TNF-α were lower than those in the sham TEAS group (P<0.01, P<0.001). In the TEAS group, at 24, 48 and 72 h after surgery, the pain VAS scores were lower than those in the sham TEAS group (P<0.001, P<0.01, P<0.05); the intraoperative dosage of remifentanil was lower than that in the sham TEAS group (P<0.001); the incidence rate of postoperative nausea and vomiting was lower than that in the sham TEAS group (P<0.01).
CONCLUSION
Perioperative TEAS intervention can effectively reduce the incidence rate of POFS, improve fatigue symptom and mental state in elderly patients undergoing laparoscopic radical gastrectomy, its mechanism may related to enhancing endogenous β-EP release, inhibiting inflammatory response, and reducing central oxidative stress, thereby promoting postoperative recovery.
Humans
;
Acupuncture Points
;
Male
;
Female
;
Aged
;
Transcutaneous Electric Nerve Stimulation
;
Postoperative Complications/therapy*
;
Middle Aged
;
Fatigue/etiology*
;
Gastrectomy/adverse effects*
;
beta-Endorphin/blood*
;
Tumor Necrosis Factor-alpha/blood*
3.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
4.Vitexin-4 ″-O-glucoside alleviates acetaminophen-induced acute liver injury.
Fan DONG ; Shanglei LAI ; Jiannan QIU ; Xiaobing DOU
Journal of Zhejiang University. Medical sciences 2025;54(3):307-317
OBJECTIVES:
To explore the protective effect of vitexin-4 ″-O-glucoside (VOG) against acetaminophen-induced acute liver injury in mice and its underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 4 groups: normal control group, model control group, low-dose group of VOG (30 mg/kg), and high-dose group of VOG (60 mg/kg). Acute liver injury was induced by intraperitoneal injection of acetaminophen (500 mg/kg). VOG was administrated by gavage 2 h before acetaminophen treatment in VOG groups. The protective effect of VOG against acute liver injury was evaluated by detecting alanine transaminase (ALT), aspartate transaminase (AST) levels and hematoxylin and eosin staining. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity in liver were detected to evaluate the hepatic oxidative stress. The expression levels of tumor necrosis factor (TNF)-α, Il-1β, and Il-6 in liver were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of phosphorylated c-jun N-terminal kinase (JNK)/JNK, phosphorylated p38/p38, inositol-requiring enzyme 1 alpha (IRE-1α), X-box binding protein 1s (XBP1s), and glucose-regulated protein 78 (GRP78) in liver were detected by Western blotting. An endoplasmic reticulum stress model was established in AML-12 cells using tunicamycin. Cell viability was assessed using the CCK-8 assay, and the degree of cell damage was detected by lactate dehydrogenase (LDH) assay. The gene expression levels of Ire-1α, Xbp1s, and Grp78 in the cells were detected using qRT-PCR.
RESULTS:
In the animal experiments, compared with the model control group, VOG significantly improved plasma ALT and AST levels, liver MDA content, as well as SOD and CAT activities. VOG also reduced the expression levels of Tnf-α, Il-1β, and Il-6 in the liver, and improved protein phosphorylation levels of JNK and p38, as well as the protein expression levels of IRE-1α, XBP1s, and GRP78. In cell experiments, VOG pretreatment enhanced cell viability, reduced LDH release and decreased the mRNA expression of Ire-1α, Xbp1s, and Grp78.
CONCLUSIONS
VOG can suppress inflammation and oxidative stress, and alleviate acetaminophen-induced acute liver injury in mice by suppressing endoplasmic reticulum stress and modulating the MAPK signaling pathway.
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Acetaminophen/adverse effects*
;
Mice, Inbred C57BL
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Glucosides/therapeutic use*
;
Oxidative Stress/drug effects*
;
Male
;
Apigenin/therapeutic use*
;
Liver/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Endoplasmic Reticulum Stress/drug effects*
;
X-Box Binding Protein 1
;
Endoribonucleases/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Protein Serine-Threonine Kinases
5.Effects of nebulized self-developed Zangsiwei Qingfei Mixture on airway inflammation in cigarette smoke-induced COPD mice and a network pharmacology analysis.
Meizhi LI ; Fei PENG ; Quan ZHANG ; Yanna WU ; Jingping SUN ; Si LEI ; Shangjie WU
Journal of Central South University(Medical Sciences) 2025;50(7):1113-1125
OBJECTIVES:
Chronic obstructive pulmonary disease (COPD) is a major chronic respiratory condition with high morbidity and mortality, imposing a serious economic and public health burden. The World Health Organization ranks COPD among the top 4 chronic diseases worldwide. Zangsiwei Qingfei Mixture (ZSWQF), a novel Tibetan herbal formulation independently developed by our research team, has shown therapeutic potential for chronic respiratory diseases. This study aims to evaluate the effects of aerosolized ZSWQF on cigarette smoke-induced COPD in mice and explore its underlying mechanisms.
METHODS:
Thirty C57 mice were randomly divided into a Control group, a COPD group, and a ZSWQF group. The Control group received saline aerosol inhalation without cigarette smoke exposure; both the COPD group and the ZSWQF group were exposed to cigarette smoke, with the former receiving saline inhalation and the latter treated with ZSWQF aerosol. White blood cell (WBC) count was performed using a fully automatic blood cell analyzer. Serum, alanine transaminase (ALT), and serum creatinine (SCr), as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels in serum and bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). BALF cell classification was determined using a hematology analyzer. Lung function was assessed with a small animal pulmonary function system, including airway resistance (RI) and cyclic dynamic compliance (CyDN). Lung tissues were stained with hematoxylin and eosin (HE), and mean linear intercept (MLI) and destruction index (DI) were calculated to evaluate morphological changes. Network pharmacology was applied to identify disease-related and ZSWQF-related targets, followed by intersection and protein-protein interaction (PPI) network analysis, and enrichment analysis of biological functions and pathways. Primary type II alveolar epithelial cell (AEC II) from SD rats were isolated and divided into a Control group, a lipopolysaccharide (LPS) group, a normal serum group, a water extract of ZSWQF (W-ZSWQF) group, a ZSWQF containing serum group, and a MLN-4760 [angiotensin-converting enzyme (ACE) 2 inhibitor]. Western blotting was performed to assess protein expression of ACE, p38 [a mitogen-activated protein kinase (MAPK)], phospho (p)-p38, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, inhibitor of nuclear factor-kappa B alpha (IκBα), p-IκBα, and p-p65 subunit of nuclear factor-kappa B (NF-κBp65).
RESULTS:
WBC counts were significantly higher in the COPD group than in controls (P<0.01) and decreased following ZSWQF treatment (P<0.05). No significant intergroup differences were found in organ weights, ALT, or SCr (all P>0.05). Serum and BALF levels of IL-6, IL-8, and TNF-α, as well as total BALF cells, neutrophils, and macrophages, were elevated in the COPD group compared with controls and reduced by ZSWQF treatment (P<0.05). COPD mice exhibited increased RI, decreased CyDN, marked alveolar congestion, inflammatory infiltration, thickened septa, and higher MLI and DI values versus controls (P<0.05); ZSWQF treatment significantly reduced MLI and DI (P<0.05). Network pharmacology identified 151 potential therapeutic targets for ZSWQF against COPD, with key nodes including TNF, IL-6, protein kinase B (Akt) 1, albumin (ALB), tumor protein p53 (TP53), non-receptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT) 3, matrix metalloproteinase (MMP)-9, and beta-catenin (CTNNB1). Enrichment analysis indicates involvement of cancer-related, phosphatidylinositol 3-kinase (PI3K)/Akt, hypoxia-inducible factor (HIF)-1, calcium, and MAPK signaling pathways. Western blotting results showed that compared with the LPS group, AEC II treated with ZSWQF-containing serum exhibited decreased expression of ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκBα, and p-NF-κBp65, while ACE2 expression was upregulated, consistent with the MAPK/nuclear factor-kappa B (NF-κB) pathway regulation predicted by network pharmacology.
CONCLUSIONS
Aerosolized ZSWQF provides protective effects in COPD mice by reducing airway inflammation and remodeling.
Animals
;
Pulmonary Disease, Chronic Obstructive/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Network Pharmacology
;
Smoke/adverse effects*
;
Bronchoalveolar Lavage Fluid
;
Administration, Inhalation
;
Inflammation/drug therapy*
;
Tumor Necrosis Factor-alpha
;
Lung/drug effects*
;
Interleukin-6/blood*
6.Danshen Injection inhibits peritoneal dialysis fluid-induced endothelial-mesenchymal transition in HMrSV5 cells by regulating the TGF-β/Smad signaling pathway.
Lihua YU ; Jingya LI ; Xiaoqi WANG ; Li LI ; Ya CHEN ; Feiyu WANG ; Kun ZHANG ; Tongsheng WANG
Journal of Southern Medical University 2024;44(12):2276-2282
OBJECTIVES:
To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.
METHODS:
HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.1% and 0.5% Danshen Injection. CCK-8 assay was used to assess the changes in viability of the treated cells, and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and vascular endothelial growth factor (VEGF) in the cell supernatant were detected using ELISA; Western blotting was performed to detect the protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), p-Smad 2/3, and Smad 7 in the cells.
RESULTS:
Culture in 40% peritoneal dialysis fluid for 72 induced significant EndMT in HMrSV5 cells, which exhibited obviously lowered cell viability. Danshen Injection within the concentration range of 0.025%-1.5% did not significantly affect the viability of the cells. Exposure of HMrSV5 cells to peritoneal dialysis fluid for 72 h significantly increased the production of IL-6, TNF‑α, TGF‑β and VEGF, upregulated the protein expressions of α‑SMA and p-Smad 2/3, and lowered the expressions of E-cadherin and Smad7 proteins. Treatment of the exposed cells with Danshen injection significantly increased cell viability and cellular expressions of E-cadherin and Smad 7 proteins and reduced the production of IL-6, TNF-α, TGF-β and VEGF and the protein expressions of α‑SMA and p-Smad 2/3.
CONCLUSIONS
Danshen Injection can suppress peritoneal dialysis fluid-induced EndMT in HMrSV5 cells possibly by regulating the TGF-β/Smad signaling pathway.
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Transforming Growth Factor beta/metabolism*
;
Humans
;
Peritoneal Dialysis/adverse effects*
;
Salvia miltiorrhiza
;
Epithelial-Mesenchymal Transition/drug effects*
;
Smad Proteins/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Cadherins/metabolism*
;
Actins/metabolism*
;
Dialysis Solutions
;
Endothelial-Mesenchymal Transition
7.Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9.
Ya ZHONG ; Bo-Wen ZHANG ; Jin-Tao LI ; Xin ZENG ; Jun-Xia PEI ; Ya-Mei ZHANG ; Yi-Xi YANG ; Fu-Lun LI ; Yu DENG ; Qi ZHAO
Journal of Integrative Medicine 2023;21(6):584-592
OBJECTIVE:
To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation.
METHODS:
Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9.
RESULTS:
EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.
CONCLUSION
Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.
Animals
;
Mice
;
Interleukin-17/metabolism*
;
Intercellular Adhesion Molecule-1
;
Imiquimod/adverse effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ligands
;
Psoriasis/chemically induced*
;
Keratinocytes
;
Inflammation/drug therapy*
;
Chemokines/metabolism*
;
Interferon-gamma/metabolism*
;
Disease Models, Animal
;
Mice, Inbred BALB C
8.Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells.
Cuiping ZHANG ; Xiaoyan CHEN ; Tianchang WEI ; Juan SONG ; Xinjun TANG ; Jing BI ; Cuicui CHEN ; Jian ZHOU ; Xiao SU ; Yuanlin SONG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):576-588
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Animals
;
Mice
;
Alveolar Epithelial Cells
;
Pyroptosis
;
Gasdermins
;
Lipopolysaccharides/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Acute Lung Injury/drug therapy*
;
Respiratory Distress Syndrome
9.Yigong Powder regulates CXCL12/CXCR4 signaling to reduce glutamate release and prevent cognitive decline in mouse model of aging.
Jiang-Ping WEI ; Zi-Xuan ZHAO ; Jing ZENG ; Fang-Hong SHANG ; Lei HUA ; Yong YANG ; Xiao-Mei ZHANG
China Journal of Chinese Materia Medica 2023;48(23):6483-6491
This study aims to explore the effect of preventive administration of Yigong Powder on the learning and memory abilities of the mouse model of aging induced by D-galactose and decipher the underlying mechanism, so as to provide a basis for the application of Yigong Powder in the prevention and treatment of cognitive decline. Forty KM mice were randomized into control, model, donepezil(1.5 mg·kg~(-1)), and high-dose(7.5 g·kg~(-1)) and low-dose(3.75 g·kg~(-1)) Yigong Powder groups. The mice in other groups except the control group were injected with D-galactose(200 g·kg~(-1)) at the back of the neck for the modeling of aging. At the same time, the mice were administrated with corresponding drugs by gavage for one month. Morris water maze was used to examine the learning and memory abilities of the mice. Hematoxylin-eosin staining was employed to observe the pathological and morphological changes of the hippocampus. The immunofluorescence assay was employed to detect the expression of ionized calcium-binding adapter molecule 1(IBA1), glial fibrillary acidic protein(GFAP), chemokine C-X-C-motif ligand 12(CXCL12), chemokine C-X-C-motif receptor 4(CXCR4) in the hippocampus and observe the positional relationship between IBA1, GFAP, and CXCR4. Western blot was employed to determine the protein levels of extracellular regulated kinase(ERK), p-ERK, and tumor necrosis factor receptor 1(TNFR1). Enzyme-linked immunosorbent assay was employed to measure the levels of glutamate and tumor necrosis factor(TNF-α) in the brain tissue and the level of TNF-α in the serum and spleen. Yigong Powder significantly shortened the escape latency, increased the times crossing platforms, and prolonged the cumulative time in quadrants of the aging mice. It alleviated the nerve cell disarrangement, increased intercellular space, and cell degeneration or death in the hippocampus and reduced the pathology score of the damaged nerve. Moreover, Yigong Powder reduced the positive area of IBA1 and GFAP, reduced the levels of TNF-α in the brain tissue, serum, and spleen, and decreased spleen index. Furthermore, Yigong Powder decreased the average fluorescence intensity of CXCL12 and CXCR4, reduced CXCR4-positive astrocytes and microglia, down-regulated the protein levels of p-ERK/ERK and TNFR1, and lowered the level of glutamate in the brain tissue. This study showed that the preventive administration of Yigong Powder can ameliorate the learning and memory decline of the D-galactose-induced aging mice by regulating the immune function of the spleen and the CXCL12/CXCR4 signaling in the brain to reduce glutamate release. However, the mechanism of Yigong San in preventing and treating dementia via regulating spleen and stomach function remains to be studied.
Mice
;
Animals
;
Powders
;
Receptors, Tumor Necrosis Factor, Type I
;
Glutamic Acid
;
Tumor Necrosis Factor-alpha/metabolism*
;
Galactose/adverse effects*
;
Disease Models, Animal
;
Cognitive Dysfunction/prevention & control*
;
Chemokines
;
Drugs, Chinese Herbal
10.Yifei Jianpi recipe improves cigarette smoke-induced inflammatory injury and mucus hypersecretion in human bronchial epithelial cells by inhibiting the TLR4/NF-κB signaling pathway.
Chen XU ; Chunying LI ; Sheng WANG
Journal of Southern Medical University 2023;43(4):507-515
OBJECTIVE:
To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.
METHODS:
Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.
RESULTS:
At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).
CONCLUSIONS
In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.
Humans
;
Rats
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Interleukin-8/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cigarette Smoking/adverse effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Mucus/metabolism*
;
RNA, Messenger/metabolism*

Result Analysis
Print
Save
E-mail