1.Progress in targeted inhibition of aerobic glycolysis combined with immunotherapy for renal cell carcinoma.
Kun ZHANG ; Mengyao RU ; Jiayuan WANG ; Jumei ZHAO ; Lan SHEN
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):74-79
Tumor aerobic glycolysis is one of the main features of tumor metabolic reprogramming. This abnormal glycolytic metabolism provides bioenergy and biomaterials for tumor growth and proliferation. It is worth noting that aerobic glycolysis will not only provide biological materials and energy for tumor cells, but also help tumor cells to escape immune surveillance through regulation of immune microenvironment, thereby resisting tumor immunotherapy and promoting tumor progression. Based on the pathogenesis of renal cell carcinoma, this paper describes the characteristics of aerobic glycolysis, the effect of glycolytic metabolism on the immune microenvironment of renal cell carcinoma, the effect of glycolysis inhibitors on the immune microenvironment of renal cell carcinoma, and the prospect of glycolysis inhibitors combined with immune checkpoint inhibitors in the treatment of renal cell carcinoma.
Humans
;
Carcinoma, Renal Cell/therapy*
;
Immunotherapy
;
Glycolysis
;
Metabolic Reprogramming
;
Kidney Neoplasms/therapy*
;
Tumor Microenvironment
2.Research progress on immunotherapy based on NK cells for hepatocellular carcinoma.
Xinyue ZHU ; Yufu ZHOU ; Shiguo ZHU
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):80-88
Hepatocellular carcinoma (HCC) is well characterized as a heterogeneous disease. Its late-stage diagnosis and chemotherapy resistance make it one of the refractory tumors in China. Natural killer (NK) cells play a significant role in immune surveillance. However, NK cells become dysfunctional in the progression of HCC, leading to tumor immune escape. This article reviews the recent progress on different strategies of NK cell-based immunotherapy in treating HCC, including direct adoptive NK cell transfer, gene engineering in NK cell, NK cell receptor targeting, immunosuppressive microenvironment modification, and tumor toxicity enhancement by cytokines or traditional Chinese medicine. These NK cell-based strategies have shown promising therapeutic potential.
Humans
;
Carcinoma, Hepatocellular/therapy*
;
Liver Neoplasms/therapy*
;
Immunotherapy
;
Killer Cells, Natural
;
Receptors, Natural Killer Cell
;
Tumor Microenvironment
3.Progress of Immunotherapy in EGFR-mutated Advanced Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2024;26(12):934-942
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are currently the first-line standard of care for patients with non-small cell lung cancer (NSCLC) that harbor EGFR mutations. Nevertheless, resistance to EGFR-TKIs is inevitable. In recent years, although immune checkpoint inhibitors (ICIs) have significantly shifted the treatment paradigm in advanced NSCLC without driver mutation, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Compared with wild-type tumors, tumors with EGFR mutations show more heterogeneity in the expression level of programmed cell death ligand 1 (PD-L1), tumor mutational burden (TMB), and other tumor microenvironment (TME) characteristics. Whether ICIs are suitable for NSCLC patients with EGFR mutations is still worth exploring. In this review, we summarized the clinical data with regard to the efficacy of ICIs in patients with EGFR-mutated NSCLC and deciphered the unique TME in EGFR-mutated NSCLC.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
ErbB Receptors/metabolism*
;
Immunotherapy
;
Mutation
;
B7-H1 Antigen/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Tumor Microenvironment
4.Hypothesis of Genetic Diversity Selection in the Occurrence and Development of Lung Cancer: Molecular Evolution and Clinical Significance.
Chinese Journal of Lung Cancer 2024;26(12):943-949
So far, the monoclonal hypothesis of tumor occurrence and development cannot be justified. The genetic diversity selection hypothesis for the occurrence and development of lung cancer links Mendelian genetics with Darwin's theory of evolution, suggesting that the genetic diversity of tumor cell populations with polyclonal origins-monoclonal selection-subclonal expansion is the result of selection pressure. Normal cells acquire mutations in oncogenic driver genes and have a selective advantage over other cells, becoming tumor initiating cells; In the interaction with the tumor microenvironment (TME), the vast majority of initiating cells are recognized and killed by the human immune system. If immune escape occurs, the incidence of malignant tumors will greatly increase, and subclonal expansion, intratumour heterogeneity, etc. will occur. This article proposed the hypothesis of genetic diversity selection and analyzed its clinical significance.
.
Humans
;
Lung Neoplasms/genetics*
;
Clinical Relevance
;
Evolution, Molecular
;
Mutation
;
Tumor Microenvironment
5.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
6.Burned-out testicular germ cell tumors: a clinicopathological analysis of three cases.
Ya Ping NI ; Zhi Han ZHANG ; Xiao Yan CHEN ; Jiang Shu LIU ; Xiao Qun YANG
Chinese Journal of Pathology 2023;52(4):347-352
Objective: To investigate the clinicopathological features and possible mechanisms of burned-out testicular germ cell tumors. Methods: The clinical and imaging data, histology and immunophenotypic characteristics of three cases of burned-out testicular germ cell tumors diagnosed at the Ruijin Hospital, Medical College of the Shanghai Jiaotong University, from 2016 to 2020 were retrospectively analyzed. The relevant literature was reviewed. Results: The mean age of the three patients was 32 years. Case 1 had an elevated preoperative alpha-fetoprotein level (810.18 μg/L) and underwent "radical pancreaticoduodenectomy and retroperitoneal lesion resection" for a retroperitoneal mass. Postoperative pathology showed embryonal carcinoma, which needed to exclude gonadal metastasis. Color Doppler ultrasound showed a solid mass of the right testis, with hypoechoic lesion and scattered calcification in some areas. Case 2 was a "right supraclavicular lymph node biopsy specimen." Chest X-ray showed multiple metastases in both lungs. The biopsy showed metastatic embryonic carcinoma and bilateral testicular color Doppler ultrasound revealed abnormal calcifications in the right testicle. Case 3 showed a cystic mass of the right testis with calcification and solid areas. All 3 patients underwent radical right orchiectomy. Grossly, borders of the testicular scar areas were well defined. Cross sectioning of the tumors showed a gray-brown cut surface and single focus or multiple foci of the tumor. The tumor maximum diameter was 0.6-1.5 cm. Microscopically, lymphocytes, plasma cells infiltration, tubular hyalinization, clustered vascular hyperplasia and hemosiderin laden macrophages were found in the scar. Atrophic and sclerotic seminiferous tubules, proliferation of clustered Leydig cells and small or coarse granular calcifications in seminiferous tubules were present around the scar. Seminoma and germ cell neoplasia in situ were seen in case 1, germ cell neoplasia in situ was seen in case 2 and germ cells with atypical hyperplasia were seen in case 3. Immunohistochemistry showed that embryonic carcinoma expressed SALL4, CKpan(AE1/AE3) and CD30, seminoma and germ cell tumor in situ expressed OCT3/4, SALL4 and CD117, and spermatogenic cells with atypical hyperplasia expressed CD99 and SALL4. The Ki-67 positive index was about 20%, while OCT3/4 and CD117 were both negative. Conclusions: Burned-out testicular germ cell tumors are rare. The possibility of gonad testicular metastasis should be considered first for extragonadal germ cell tumor. If fibrous scar is found in testis, it must be determined whether it is a burned-out testicular germ cell tumor. The burned-out mechanisms may be related to the microenvironment of tumor immune-mediated and local ischemic injury.
Male
;
Humans
;
Adult
;
Seminoma/secondary*
;
Cicatrix/pathology*
;
Hyperplasia
;
Retrospective Studies
;
China
;
Testicular Neoplasms/pathology*
;
Neoplasms, Germ Cell and Embryonal/surgery*
;
Calcinosis
;
Carcinoma
;
Tumor Microenvironment
7.Research progress on the effect of iron oxide nanoparticles in macrophage polarization.
Haojie ZHANG ; Xinyu ZHANG ; Yachan FENG ; Chao DU ; Yingze WANG ; Xueling GUO
Journal of Biomedical Engineering 2023;40(2):384-391
Macrophages are important immune effector cells with significant plasticity and heterogeneity in the body immune system, and play an important role in normal physiological conditions and in the process of inflammation. It has been found that macrophage polarization involves a variety of cytokines and is a key link in immune regulation. Targeting macrophages by nanoparticles has a certain impact on the occurrence and development of a variety of diseases. Due to its characteristics, iron oxide nanoparticles have been used as the medium and carrier for cancer diagnosis and treatment, making full use of the special microenvironment of tumors to actively or passively aggregate drugs in tumor tissues, which has a good application prospect. However, the specific regulatory mechanism of reprogramming macrophages using iron oxide nanoparticles remains to be further explored. In this paper, the classification, polarization effect and metabolic mechanism of macrophages were firstly described. Secondly, the application of iron oxide nanoparticles and the induction of macrophage reprogramming were reviewed. Finally, the research prospect and difficulties and challenges of iron oxide nanoparticles were discussed to provide basic data and theoretical support for further research on the mechanism of the polarization effect of nanoparticles on macrophages.
Humans
;
Macrophages/metabolism*
;
Cytokines
;
Inflammation
;
Neoplasms/metabolism*
;
Nanoparticles
;
Magnetic Iron Oxide Nanoparticles
;
Tumor Microenvironment
8.Cancer-cell-intrinsic mechanisms shaping the immunosuppressive landscape of prostate cancer.
Yini ZHU ; Loan DUONG ; Xuemin LU ; Xin LU
Asian Journal of Andrology 2023;25(2):171-178
Although immunotherapy has revolutionized cancer treatment and achieved remarkable success across many different cancer types, only a subset of patients shows meaningful clinical responses. In particular, advanced prostate cancer exhibits overwhelming de novo resistance to immune checkpoint blockade therapy. This is primarily due to the immunosuppressive tumor microenvironment of prostate cancer. Therefore, it is paramount to understand how prostate cancer cell-intrinsic mechanisms promote immune evasion and foster an immunosuppressive microenvironment. Here, we review recent findings that reveal the roles of the genetic alterations, androgen receptor signaling, cancer cell plasticity, and oncogenic pathways in shaping the immunosuppressive microenvironment and thereby driving immunotherapy resistance. Based on preclinical and clinical observations, a variety of therapeutic strategies are being developed that may illuminate new paths to enhance immunotherapy efficacy in prostate cancer.
Male
;
Humans
;
Prostatic Neoplasms/pathology*
;
Prostate/pathology*
;
Immunotherapy
;
Tumor Microenvironment
9.Study on the Regulation of Chidamide on CD8+T Cells in T-cell Acute Lymphoblastic Leukemia.
Miao-Ming YAN ; Zhao-Xuan LI ; Chong CHEN ; Wei ZHANG ; Dao-Bin ZHOU
Journal of Experimental Hematology 2023;31(1):71-75
OBJECTIVE:
To explore the regulatory effect of chidamide on CD8+ T cells in T-cell acute lymphoblastic leukemia.
METHODS:
The expression levels of CXCL9 and CXCL3 mRNA in Jurkat cells, lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells were detected by fluorescence quantitative PCR. The proportion of CD8+ T cells in lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells was determined by flow cytometry.
RESULTS:
Chidamide upregulated CXCL9 mRNA expression in Jurkat cell line in a dose-dependent manner (r=0.950). The mRNA expression of CXCL9 in chidamide 5 μmol/L group was 164 times higher than that in control group. Chidamide upregulated CXCL9 mRNA expression in lymphocytes, but the up-regulated level was significantly lower than that in Jurkat cell line treated with the same concentration of chidamide. Co-culture with chidamide treated Jurkat cells upregulated the proportion of CD8+ T cells in lymphocytes.
CONCLUSION
In T-cell acute lymphoblastic leukemia, chidamide may increase the concentration of CXCL9 in the tumor microenvironment by up-regulating the expression of CXCL9 in tumor cells, leading to an increase in the number of CD8+ T cells.
Humans
;
CD8-Positive T-Lymphocytes
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Aminopyridines/pharmacology*
;
Jurkat Cells
;
RNA, Messenger
;
Cell Line, Tumor
;
Apoptosis
;
Tumor Microenvironment
10.Bone Marrow Adipocytes Promote the Survival of Multiple Myeloma Cells and Up-Regulate Their Chemoresistance.
Xiao-Qian WEI ; Yang-Min ZHANG ; Yu SUN ; Hua-Yu LING ; Yuan-Ning HE ; Jin-Xiang FU
Journal of Experimental Hematology 2023;31(1):154-161
OBJECTIVE:
To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.
METHODS:
Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.
RESULTS:
The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.
CONCLUSION
The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
Humans
;
Osteogenesis/genetics*
;
Bone Marrow/metabolism*
;
Multiple Myeloma/metabolism*
;
Drug Resistance, Neoplasm
;
Peroxisome Proliferator-Activated Receptors/pharmacology*
;
Cell Differentiation
;
Adipogenesis
;
Cytokines/metabolism*
;
Adipocytes/metabolism*
;
Bone Marrow Cells/metabolism*
;
Cells, Cultured
;
PPAR gamma/pharmacology*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail