1.A family report on congenital fibrosis of extraocular muscles syndrome caused by TUBB3 gene mutation.
Min LI ; Xin QI ; Yunping LI ; Boding TONG
Journal of Central South University(Medical Sciences) 2025;50(7):1282-1288
Congenital fibrosis of extraocular muscles (CFEOM) syndrome is a genetically determined congenital disorder characterized by non-progressive ophthalmoplegia, restrictive ocular fixation, and ptosis. Its estimated incidence is approximately 1 in 230 000 to 250 000. This paper reports a family with type 3 CFEOM diagnosed at the Second Xiangya Hospital of Central South University. The proband was a 10-year-old female who presented with right esotropia and right upper eyelid ptosis. Whole-exome sequencing revealed a heterozygous c.904G>A mutation in the TUBB3 gene. Genetic testing of family members identified that the proband's mother carried the same mutation and exhibited left eyelid ptosis. The child underwent strabismus correction followed by ptosis repair, both of which led to marked postoperative improvement. For children presenting with congenital extraocular movement restriction and ptosis, genetic testing plays a crucial role in confirming the diagnosis and guiding family analysis. Additionally, individualized surgical intervention can significantly improve both ocular function and cosmetic appearance.
Humans
;
Female
;
Child
;
Ophthalmoplegia/congenital*
;
Fibrosis/congenital*
;
Blepharoptosis/surgery*
;
Mutation
;
Tubulin/genetics*
;
Pedigree
;
Male
;
Esotropia/genetics*
;
Congenital Cranial Dysinnervation Disorders
2.Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy.
Xing CHANG ; Siyuan ZHOU ; Yu HUANG ; Jinfeng LIU ; Yanli WANG ; Xuanke GUAN ; Qiaomin WU ; Zhiming LIU ; Ruxiu LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):311-321
Zishen Huoxue decoction (ZSHX) enhances cardiomyocyte viability following hypoxic stress; however, its upstream therapeutic targets remain unclear. Network pharmacology and RNA sequencing analyses revealed that ZSHX target genes were closely associated with mitophagy and apoptosis in the mitochondrial pathway. In vitro, ZSHX inhibited pathological mitochondrial fission following hypoxic stress, regulated FUN14 domain-containing protein 1 (FUNDC1)-related mitophagy, and increased the levels of mitophagy lysosomes and microtubule-associated protein 1 light chain 3 beta II (LC3II)/translocase of outer mitochondrial membrane 20 (TOM20) expression while inhibiting the over-activated mitochondrial unfolded protein response. Additionally, ZSHX regulated the stability of beta-tubulin through Sirtuin 5 (SIRT5) and could modulate FUNDC1-related synergistic mechanisms of mitophagy and unfolded protein response in the mitochondria (UPRmt) via the SIRT5 and -β-tubulin axis. This targeting pathway may be crucial for cardiomyocytes to resist hypoxia. Collectively, these findings suggest that ZSHX can protect against cardiomyocyte injury via the SIRT5-β-tubulin axis, which may be associated with the synergistic protective mechanism of SIRT5-β-tubulin axis-related mitophagy and UPRmt on cardiomyocytes.
Mitophagy/drug effects*
;
Tubulin/genetics*
;
Animals
;
Myocytes, Cardiac/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Sirtuins/genetics*
;
Unfolded Protein Response/drug effects*
;
Myocardial Ischemia/genetics*
;
Rats
;
Humans
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Male
3.Research on the mechanism of mechanical ventilation induced endoplasmic reticulum stress promoting mechanical ventilation-induced pulmonary fibrosis.
Ri TANG ; Jinhua FENG ; Shuya MEI ; Qiaoyi XU ; Yang ZHOU ; Shunpeng XING ; Yuan GAO ; Zhengyu HE ; Zhiyun ZHANG
Chinese Critical Care Medicine 2023;35(11):1171-1176
OBJECTIVE:
To demonstrate the mechanism of mechanical ventilation (MV) induced endoplasmic reticulum stress (ERS) promoting mechanical ventilation-induced pulmonary fibrosis (MVPF), and to clarify the role of angiotensin receptor 1 (AT1R) during the process.
METHODS:
The C57BL/6 mice were randomly divided into four groups: Sham group, MV group, AT1R-shRNA group and MV+AT1R-shRNA group, with 6 mice in each group. The MV group and MV+AT1R-shRNA group mechanically ventilated for 2 hours after endotracheal intubation to establish MVPF animal model (parameter settings: respiratory rate 70 times/minutes, tidal volume 20 mL/kg, inhated oxygen concentration 0.21). The Sham group and AT1R-shRNA group only underwent intubation after anesthesia and maintained spontaneous breathing. AT1R-shRNA group and MV+AT1R-shRNA group were airway injected with the adeno-associated virus one month before modeling to inhibit AT1R gene expression in lung tissue. The expressions of AT1R, ERS signature proteins [immunoglobulin heavy chain-binding protein (BIP), protein disulfide isomerase (PDI)], fibrosis signature proteins [collagen I (COL1A1), α-smooth muscle actin (α-SMA)] in lung tissues were detected by immunofluorescence and Western blotting. Hematoxylin-eosin (HE) staining was used to evaluate lung injury and Masson staining was used to evaluate pulmonary fibrosis.
RESULTS:
Compared with the Sham group, the degree of pulmonary fibrosis and lung injury were more significant in the MV group. In the MV group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were increased (AT1R/β-actin: 1.40±0.02 vs. 1, BIP/β-actin: 2.79±0.07 vs. 1, PDI/β-actin: 2.07±0.02 vs. 1, COL1A1/α-Tubulin: 2.60±0.15 vs. 1, α-SMA/α-Tubulin: 2.80±0.25 vs. 1, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue increased, and the fluorescence intensity of COL1A1 and α-SMA increased. Compared with the MV group, the degree of pulmonary fibrosis and lung injury were significantly relieved in the MV+AT1R-shRNA group. In the MV+AT1R-shRNA group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were decreased (AT1R/β-actin: 0.53±0.03 vs. 1.40±0.02, BIP/β-actin: 1.73±0.15 vs. 2.79±0.07, PDI/β-actin: 1.04±0.07 vs. 2.07±0.02, COL1A1/α-Tubulin: 1.29±0.11 vs. 2.60±0.15, α-SMA/α-Tubulin: 1.27±0.10 vs. 2.80±0.25, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue decreased, and the fluorescence intensity of COL1A1 and α-SMA decreased. There was no statistically significant difference in the indicators between AT1R-shRNA group and Sham group.
CONCLUSIONS
MV up-regulate the expression of AT1R in alveolar epithelial cells, activate the AT1R pathway, induce ERS and promote the progression of MVPF.
Mice
;
Animals
;
Pulmonary Fibrosis/chemically induced*
;
Lung Injury
;
Respiration, Artificial/adverse effects*
;
Actins/metabolism*
;
Tubulin
;
Mice, Inbred C57BL
;
Endoplasmic Reticulum Stress
;
RNA, Small Interfering
4.Study on in vitro differentiation of human adenoid-derived mesenchymal stem cells into olfactory sensory neurons.
Fang Fang GUO ; Ben Quan YU ; Yong CHEN ; Jun HE ; Yu GU ; Xin WAN ; Zi An XIAO
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):233-239
Objective: To investigate the feasibility of isolation and culture of human adenoid-derived mesenchymal stem cells (aMSCs) in vitro, and to observe the differentiation of aMSCs into olfactory sensory neurons. Methods: Adenoid tissues surgically removed from children with adenoid hypertrophy in the Second Xiangya Hospital of Central South University from September to November of 2020 were collected. The adenoid tissues were digested and isolated by trypsin and then cultured with adhesion method. The expressions of cell surface antigens CD45, CD73 and CD90 on aMSCs of P5 generation were tested by flow cytometry, and the ability of osteogenic and adipogenic induction were used to identify cell differentiation ability. Then, aMSCs were induced into differentiation by retinoic acid (RA), sonic hedgehog (SHH), basic fibroblast growth factor (bFGF), RA+SHH, RA+bFGF, SHH+bFGF and RA+SHH+bFGF, respectively. The morphology of differentiated cells was observed under inverted microscope. The expression of β-tubulin 3, which was the specific marker of sensory neuron, the expressions of growth associated protein-43 (GAP43) and olfactory maker protein (OMP), which were the specific markers of olfactory sensory neuron, were detected by immunofluorescence antibody assay. The expression intensities were compared by Chi-square test of four-grid table data. Results: aMSCs were successively isolated and cultured from human adenoid tissues. P0 cells generation had good adhesion and proliferation performance. P2 cells were basically purified. P5 cells expressed CD73 and CD90 with the purity of 99.3% and 99.75% respectively, without CD45 expression. P5 cells had a good ability of osteogenic differentiation and adipogenic differentiation. Neuron-like morphology and expression of β-tubulin 3 were found in differentiated cells after induced by RA, SHH, or bFGF, respectively. An induction of expression of GAP43 was found in differentiated cells of bFGF+SHH group and RA+SHH+bFGF group, without expression of OMP of each group. The intensity of GAP43 expression of RA+SHH+bFGF group was stronger than that of bFGF+SHH group (χ2=17.48, P<0.005). Conclusions: aMSCs can be cultured from human adenoid tissues, with the stably passaged and good differentiation ability. As a new population of mesenchymal stem cells, aMSCs have the neuroregenerative properties and could differentiate into immature olfactory sensory neurons under the induction of RA+SHH+bFGF in vitro.
Child
;
Humans
;
Hedgehog Proteins
;
Olfactory Receptor Neurons
;
Tubulin
;
Adenoids
;
Osteogenesis
;
Cell Differentiation
5.Expression of TUBB4B in mouse primary spermatocyte GC-2 cells and its regulatory effect on NF-κB and MAPK signaling pathway.
Tongjia LIU ; Wanlun WANG ; Ting ZHANG ; Shuang LIU ; Yanchao BIAN ; Chuanling ZHANG ; Rui XIAO
Journal of Southern Medical University 2023;43(6):1002-1009
OBJECTIVE:
To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.
METHODS:
Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.
RESULTS:
Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).
CONCLUSIONS
TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.
Animals
;
Male
;
Mice
;
GTP-Binding Proteins/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
RNA, Messenger
;
Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism*
;
Signal Transduction
;
Spermatocytes
;
Tubulin/genetics*
6.Analysis of TUBB4A gene variant in a patient with adolescent-onset hypomyelinating leukodystrophy with atrophy of basal ganglia and cerebellum.
Zixuan YING ; Xi CHENG ; Xiaoquan XU ; Zhi MA ; Zhengyu CHEN ; Wen CHEN ; Lang QIN ; Qi NIU
Chinese Journal of Medical Genetics 2023;40(4):390-394
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a patient with adolescent-onset hypomyelinated leukodystrophy with atrophy of basal ganglia and cerebellum (H-ABC).
METHODS:
A patient who was diagnosed with H-ABC in March 2018 at the First Affiliated Hospital of Nanjing Medical University was selected as the study subject. Clinical data was collected. Peripheral venous blood samples of the patient and his parents were collected. The patient was subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing.
RESULTS:
The patient, a 31-year-old male, had manifested with developmental retardation, cognitive decline and abnormal gait. WES revealed that he has harbored a heterozygous c.286G>A variant of the TUBB4A gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. Analysis with SIFT online software indicated the amino acid encoded by this variant is highly conserved among various species. This variant has been recorded by the Human Gene Mutation Database (HGMD) with a low population frequency. The 3D structure constructed by PyMOL software showed that the variant has a harmful effect on the structure and function of the protein. According to the guidelines formulated by the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic.
CONCLUSION
The c.286G>A (p.Gly96Arg) variant of the TUBB4A gene probably underlay the hypomyelinating leukodystrophy with atrophy of basal ganglia and cerebellum in this patient. Above finding has enriched the spectrum of TUBB4A gene variants and enabled early definitive diagnosis of this disorder.
Male
;
Humans
;
Adolescent
;
Adult
;
Magnetic Resonance Imaging
;
Basal Ganglia/pathology*
;
Cerebellum
;
Atrophy/pathology*
;
Mutation
;
Tubulin/genetics*
7.Effects of Yizhi Tiaoshen acupuncture on learning and memory function and the expression of phosphorylated tau protein in the hippocampus of Alzheimer's disease model rats.
Xin ZHANG ; Yu-Ting WEI ; Jun-Yan WANG ; Hong-Xin LIU ; Tian-Tian ZHU ; Xing-Ke YAN
Chinese Acupuncture & Moxibustion 2023;43(7):793-799
OBJECTIVE:
To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD.
METHODS:
A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3β (GSK-3β) in the hippocampus was detected.
RESULTS:
There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3βwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3β was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05).
CONCLUSION
Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3β and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Glycogen Synthase Kinase 3 beta
;
Tubulin
;
Alzheimer Disease/therapy*
;
tau Proteins/genetics*
;
Acupuncture Therapy
;
Hippocampus
8.Analysis of TUBB2B gene variant in a fetus with complex cortical dysplasia with other brain malformations-7.
Lulu YAN ; Zhaier LU ; Yingwen LIU ; Chunxiao HAN ; Hongjun YING ; Youwei BAO ; Jiangyang XUE ; Haibo LI
Chinese Journal of Medical Genetics 2022;39(3):301-304
OBJECTIVE:
To explore the genetic basis for a fetus with dysgenesis of corpus callosum and other brain malformations.
METHODS:
Whole exome sequencing was carried out for the fetus and its parents. Suspected pathogenic variants were verified by Sanger sequencing.
RESULTS:
A novel de novo missense variant c.758T>A (p.L253Q) of the TUBB2B gene was identified, which was unreported previously. Based on the guidelines from the American College of Medical Genetics, the c.758T>A variant was predicted to be likely pathogenic. Bioinformatics analysis predicted that the leucine at position 253 was highly conserved among various species, and the c.758T>A variant may impact the formation of hydrogen bonds between Leu253 and Asp249 and Met257 residues, which in turn may affect the combination of GTP/GDP and function of the TUBB2B protein.
CONCLUSION
The c.758T>A variant of the TUBB2B gene probably underlay the fetal malformations in this Chinese family. Above discovery has enriched the spectrum of TUBB2B gene variants and provided a basis for genetic counseling and prenatal diagnosis.
Brain
;
Female
;
Fetus/abnormalities*
;
Humans
;
Malformations of Cortical Development/genetics*
;
Pregnancy
;
Prenatal Diagnosis
;
Tubulin/genetics*
;
Whole Exome Sequencing
9.Research Progress on the Mechanism of Tubulin in Megakaryopoiesis and Regulation of Platelet Count--Review.
Si-Ying NIU ; Li-Jun XIA ; Miao JIANG
Journal of Experimental Hematology 2022;30(1):323-326
Tubulin affects platelets count through the control of mitosis and the formation of pro-platelets during the maturation of megakaryoblast to platelets. Tubulin is involved in maintaining the integrity of platelet skeleton, and also participates in the change of platelet morphology during platelet activation. Some new anti-tumor drugs targeting cell mitosis are trying to reduce the effect on tubulin in order to reduce the side effect of drugs on platelet formation. In some patients with thrombocytopenia, the variation and polymorphism of the tubulin gene affect the structure of microtubule multimers, which leads to the decrease of platelet formation. This review summarized the latest progresses of tubulin in the regulation of megakaryopoiesis and thrombopoiesis.
Blood Platelets
;
Humans
;
Megakaryocytes
;
Platelet Count
;
Thrombopoiesis
;
Tubulin
10.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT.
Ya Ting WU ; Ze ZHANG ; Ran JI ; Shu Hao ZHANG ; Wen Ping WANG ; Chao WU ; Jia Ping ZHANG ; Xu Pin JIANG ; Hengshu ZHANG
Chinese Journal of Burns 2022;38(11):1066-1072
Objective: To investigate the regulatory effects of bio-intensity electric field on directional migration and microtubule acetylation in human epidermal cell line HaCaT, aiming to provide molecular theoretical basis for the clinical treatment of wound repair. Methods: The experimental research methods were used. HaCaT cells were collected and divided into simulated electric field group (n=54) placed in the electric field device without electricity for 3 h and electric field treatment group (n=52) treated with 200 mV/mm electric field for 3 h (the same treatment methods below). The cell movement direction was observed in the living cell workstation and the movement velocity, trajectory velocity, and direction of cosθ of cell movement within 3 h of treatment were calculated. HaCaT cells were divided into simulated electric field group and electric field treatment 1 h group, electric field treatment 2 h group, and electric field treatment 3 h group which were treated with 200 mV/mm electric field for corresponding time. HaCaT cells were divided into simulated electric field group and 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group treated with electric field of corresponding intensities for 3 h. The protein expression of acetylated α-tubulin was detected by Western blotting (n=3). HaCaT cells were divided into simulated electric field group and electric field treatment group, and the protein expression of acetylated α-tubulin was detected and located by immunofluorescence method (n=3). Data were statistically analyzed with Kruskal-Wallis H test,Mann-Whitney U test, Bonferroni correction, one-way analysis of variance, least significant difference test, and independent sample t test. Results: Within 3 h of treatment, compared with that in simulated electric field group, the cells in electric field treatment group had obvious tendency to move directionally, the movement velocity and trajectory velocity were increased significantly (with Z values of -8.53 and -2.05, respectively, P<0.05 or P<0.01), and the directionality was significantly enhanced (Z=-8.65, P<0.01). Compared with (0.80±0.14) in simulated electric field group, the protein expressions of acetylated α-tubulin in electric field treatment 1 h group (1.50±0.08) and electric field treatment 2 h group (1.89±0.06) were not changed obviously (P>0.05), while the protein expression of acetylated α-tubulin of cells in electric field treatment 3 h group (3.37±0.36) was increased significantly (Z=-3.06, P<0.05). After treatment for 3 h, the protein expressions of acetylated α-tubulin of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group were 1.63±0.05, 2.24±0.08, and 2.00±0.13, respectively, which were significantly more than 0.95±0.27 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of acetylated α-tubulin in 200 mV/mm electric field group and 300 mV/mm electric field group were increased significantly (P<0.01); the protein expression of acetylated α-tubulin of cells in 300 mV/mm electric field group was significantly lower than that in 200 mV/mm electric field group (P<0.05). After treatment for 3 h, compared with that in simulated electric field group, the acetylated α-tubulin of cells had enhanced directional distribution and higher protein expression (t=5.78, P<0.01). Conclusions: Bio-intensity electric field can induce the directional migration of HaCaT cells and obviously up-regulate the level of α-ubulin acetylation after treatment at 200 mV/mm bio-intensity electric field for 3 h.
Humans
;
Acetylation
;
Tubulin/metabolism*
;
Microtubules/metabolism*
;
Electricity
;
Epidermal Cells/metabolism*

Result Analysis
Print
Save
E-mail