1.Potential Toxicity of Traditional Chinese Medicine and Its Scientific Regulation
Ting WANG ; Can TU ; Lin ZHANG ; Zhaojuan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):1-9
In recent years, with the extensive application of traditional Chinese medicine (TCM) both domestically and internationally, safety concerns associated with TCM have been frequently reported. Notably, some TCM substances traditionally regarded as ''non-toxic'' have exhibited significant adverse reactions during clinical use, drawing substantial attention to TCM safety. This study first analyzed the risk factors contributing to the potential toxicity of TCM from perspectives such as drug properties, individual constitution, and clinical medication practices. Subsequently, it proposed research strategies and methodologies for investigating potential TCM toxicity: ① conduct studies under the guidance of TCM theory, adhering to the principle of diversity and unity. ② adopt an integrated research paradigm of ''originating from clinical practice-syndrome-based foundation-returning to clinical practice-serving supervision''. ③ implement a three-tier technical system of ''Mathematical modeling-high-throughput screening via liquid chromatography-mass spectrometry (LC-MS)-systems biology'' to systematically elucidate the causes, material basis, and mechanisms of toxicity. Finally, scientific regulatory recommendations for potential TCM toxicity are proposed: ① establish a multidimensional prevention and control system addressing drug properties, physical constitution factors, and clinical medication practices. ② address the impact of modern processing techniques on the safety of new TCM drugs. ③ strengthen the revision of standards for Chinese medicinal materials to ensure their safety. ④ account for disease-syndrome combination animal models and interspecies differences in safety assessment outcomes. This study aims to overcome critical challenges in TCM regulation by advancing evaluation through research and driving research through evaluation. By establishing a high-level scientific regulatory framework, it seeks to not only safeguard clinical medication safety but also propel the high-quality development of the TCM industry, thereby providing scientific support for the inheritance and innovative evolution of TCM.
2.Potential Toxicity of Traditional Chinese Medicine and Its Scientific Regulation
Ting WANG ; Can TU ; Lin ZHANG ; Zhaojuan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):1-9
In recent years, with the extensive application of traditional Chinese medicine (TCM) both domestically and internationally, safety concerns associated with TCM have been frequently reported. Notably, some TCM substances traditionally regarded as ''non-toxic'' have exhibited significant adverse reactions during clinical use, drawing substantial attention to TCM safety. This study first analyzed the risk factors contributing to the potential toxicity of TCM from perspectives such as drug properties, individual constitution, and clinical medication practices. Subsequently, it proposed research strategies and methodologies for investigating potential TCM toxicity: ① conduct studies under the guidance of TCM theory, adhering to the principle of diversity and unity. ② adopt an integrated research paradigm of ''originating from clinical practice-syndrome-based foundation-returning to clinical practice-serving supervision''. ③ implement a three-tier technical system of ''Mathematical modeling-high-throughput screening via liquid chromatography-mass spectrometry (LC-MS)-systems biology'' to systematically elucidate the causes, material basis, and mechanisms of toxicity. Finally, scientific regulatory recommendations for potential TCM toxicity are proposed: ① establish a multidimensional prevention and control system addressing drug properties, physical constitution factors, and clinical medication practices. ② address the impact of modern processing techniques on the safety of new TCM drugs. ③ strengthen the revision of standards for Chinese medicinal materials to ensure their safety. ④ account for disease-syndrome combination animal models and interspecies differences in safety assessment outcomes. This study aims to overcome critical challenges in TCM regulation by advancing evaluation through research and driving research through evaluation. By establishing a high-level scientific regulatory framework, it seeks to not only safeguard clinical medication safety but also propel the high-quality development of the TCM industry, thereby providing scientific support for the inheritance and innovative evolution of TCM.
3.Exploring the current status of quality management of cold chain medicines in DTP pharmacies and the measures for pre-emptive risk management
Mulan WANG ; Peng LIN ; Siwu TU ; Zhenzhen CHEN ; Hongqiao WANG
China Pharmacy 2025;36(4):395-400
OBJECTIVE To investigate the current status of quality management of cold chain medicines in direct-to-patient (DTP) pharmacies and propose measures for pre-emptive risk management, providing references for the quality risk management of cold chain medicines. METHODS Based on the requirements of national regulations, a survey was conducted on the quality management of cold chain medicines in DTP pharmacies of J Province from November 2023 to February 2024, focusing on the receipt, storage, distribution, and delivery processes, using questionnaires, telephone interviews, and on-site visits. Common quality management issues in the operation of cold chain medicines were identified, and the causes of these issues were analyzed to propose feasible pre-emptive risk management measures. RESULTS & CONCLUSIONS A total of 122 DTP pharmacies participated in the questionnaire survey, and personnel from 30 DTP pharmacies participated in on-site and telephone interviews. Typical problems were identified in some DTP pharmacies, including insufficient personnel allocation or training, incomplete or inadequate implementation of quality system documentation, inadequate provision or management of cold chain facilities and equipment, and non-compliant storage and distribution of cold chain medicines. These issues posed certain risks to the quality management of cold chain medicines. It is recommended that DTP pharmacies strengthen personnel allocation and training, improve quality system documentation, enhance the provision and management of facilities and equipment, standardize storage and transportation operations, and strengthen supervision and assessment as pre-emptive measures. In addition, all sectors of society should also collaborate in governance from the perspective of ensuring the safety of cold chain drug storage and transportation, in order to mitigate the risk of quality and safety issues during the distribution of cold chain drugs and guarantee the safe and effective use of medications for patients.
4.Experience in Staged Differentiation and Treatment of Cirrhotic Ascites Based on the Theory of Tonification and Purging
Haihang DONG ; Yujie CAI ; Huiqin ZHANG ; Yan CHEN ; Yuying TU ; Dongling WANG ; Yinqiang ZHANG
Journal of Traditional Chinese Medicine 2025;66(5):532-536
It is believed that patients with cirrhotic ascites exhibit a pathological mechanism characterized by the decline of healthy qi and the accumulation of pathogenic factors. Clinically, treatment should be based on the theory of tonification and purging, with a staged approach distinguishing between the active phase and the remission phase. The balance between tonification and purging should be adjusted according to the progression of pathogenic and healthy actors. In the acute phase, purging should take precedence over tonification, using purging as a means of tonification to facilitate the flow of water and qi through the triple energizer. The severity of water retention, dampness, blood stasis, and heat should be carefully assessed to ensure thorough elimination of pathogenic factors while avoiding harm to healthy qi. Medication adjustments should be made once the pathogenic factors are significantly weakened. In the remission phase, an integrated approach combining both tonification and purging should be adopted, incorporating purging within tonification to clear residual pathogens and prevent recurrence. Concurrently, proactive treatment of the underlying disease is essential to achieve complete recovery and prevent the recurrence of ascites.
5.Hepatitis E virus infection among blood donors in Zhengzhou
Hongna ZHAO ; Yueguang WEI ; Lumin YAN ; Tiantian TU ; Shumin WANG ; Yihui WEI ; Yifang WANG ; Lei ZHAO ; Mingjun CHEN
Chinese Journal of Blood Transfusion 2025;38(1):13-18
[Objective] To analyze the infection status of hepatitis E virus (HEV) among blood donors in Zhengzhou, so as to provide data support for formulating local blood screening strategies. [Methods] Random samples from blood donors from January to December 2022 were tested for HEV RNA using PCR technology. Reactive samples were sequenced for gene analysis, and the donors were followed up. [Results] Among 21 311 samples, 3(0.14‰) were reactive for HEV RNA, all of whom were male. Genetic sequencing results revealed that one strong positive sample was genotype 4, while sequencing failed for the other two due to low viral load. A follow-up of 25 strong positive donors showed that ALT significantly increased on day 7 after donation, anti-HEV IgM and anti-HEV IgG turned positive. On day 21, ALT returned to normal, and on day 35, HEV RNA turned negative. Notably, anti-HEV IgM and anti-HEV IgG persisted until day 482. [Conclusion] There is HEV infection among blood donors in Zhengzhou, and it is necessary to expand the screening scope to comprehensively explore the prevalence and genotype distribution of HEV among blood donors.
6.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
7.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
8.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
9.Advances in target-guided discovery technologies for active components in traditional Chinese medicine.
Meng DING ; Wang-Xiao TAN ; Xiao ZHANG ; Peng-Fei TU ; Yong JIANG
China Journal of Chinese Materia Medica 2025;50(13):3645-3656
Traditional Chinese medicine(TCM), with diverse structural types of active components and remarkable clinical efficacy, holds a significant position in the pharmacological research. As the key substances, active components of TCM are of great importance in revealing the material basis of TCM efficacy and mechanism of action. However, the conventional approaches of discovering active components in TCM are characterized by tedious procedures, lengthy cycles, and unclear mechanisms, which struggle to meet the current demands for drug development. In recent years, major breakthroughs have been made in target discovery technologies, and new drug targets are constantly being discovered, which has facilitated the development of target-driven approaches. The target-guided active component discovery strategy provides a new paradigm for discovering active components in TCM. This article systematically summarizes two mainstream target-based technologies-virtual screening and ligand fishing-for TCM active component discovery. By analyzing relevant application cases, this article evaluates the strengths and limitations of each technology. The review aims to provide frameworks for expediting bioactive component discovery in complex systems like TCM, so as to accelerate the development of innovative drugs based on the active components of TCM and promote the modernization and internationalization of TCM.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Medicine, Chinese Traditional
;
Drug Discovery/methods*
;
Animals
10.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals

Result Analysis
Print
Save
E-mail