1.Risk factors for allogeneic red blood cell transfusion in adult spinal deformity surgery
Yasushi IIJIMA ; Toshiaki KOTANI ; Tsuyoshi SAKUMA ; Tsutomu AKAZAWA ; Shunji KISHIDA ; Keisuke UENO ; Shohei ISE ; Yosuke OGATA ; Masaya MIZUTANI ; Yasuhiro SHIGA ; Shohei MINAMI ; Seiji OHTORI
Asian Spine Journal 2024;18(4):579-586
Methods:
The medical records of 151 patients with ASD who underwent correction surgery between 2012 and 2021 were retrospectively reviewed. Estimated blood loss and perioperative allogeneic transfusion were examined. Patients were categorized into two groups based on whether they received perioperative allogeneic blood transfusion. Logistic regression analysis was employed to investigate the effect of age, sex, blood type, body mass index, American Society of Anesthesiologists’ physical status, preoperative hemoglobin level, autologous blood donation, global spine alignment parameters, preoperative use of anticoagulants or antiplatelet medicine and nonsteroidal anti-inflammatory drugs, number of instrumented fusion levels, total operative duration, three-column osteotomy, lateral interbody fusion, pelvic fixation, intraoperative hypothermia, use of gelatin-thrombin based hemostatic agents, and intraoperative tranexamic acid (TXA) with simultaneous exposure by two attending surgeons.
Results:
The estimated blood loss was 994.2±754.5 mL, and 71 patients (47.0%) received allogeneic blood transfusion. In the logistic regression analysis, the absence of intraoperative TXA use and simultaneous exposure (odds ratio [OR], 26.3; 95% confidence interval [CI], 7.6–90.9; p<0.001), lack of autologous blood donation (OR, 21.2; 95% CI, 4.4–100.0; p<0.001), and prolonged operative duration (OR, 1.6; 95% CI, 1.3–1.9; p<0.001) were significant independent factors for perioperative allogeneic blood transfusion in ASD surgery.
Conclusions
Autologous blood storage, intraoperative TXA administration, and simultaneous exposure should be considered to minimize perioperative allogeneic blood transfusion in ASD surgery, particularly in patients with anticipated lengthy surgeries.
2.Analysis of Rod Fracture at the Lumbosacral Junction Following Surgery for Adult Spinal Deformity
Tsuyoshi SAKUMA ; Toshiaki KOTANI ; Yasushi IIJIMA ; Tsutomu AKAZAWA ; Seiji OHTORI ; Shohei MINAMI
Asian Spine Journal 2024;18(1):79-86
Methods:
The study included data from 100 patients who underwent ASD surgery between 2012 and 2020. Fifteen of these patients presented with RFs. Patient demographics, clinical outcomes, and radiographic parameters were evaluated in each group.
Results:
RFs were significantly more frequent in patients with a medical history of total hip arthroplasty (THA; p=0.01) or severe obesity (p=0.04). However, no significant differences in clinical outcomes, preoperative or postoperative measurements, or changes were found between pre- and postoperative radiographic parameters within the groups. Both pre- (p=0.01) and postoperative (p=0.02) anterior disc heights were significantly greater in the RF group than in the non-RF group. In the RF group, the postoperative lordotic angles of the lumbosacral junction significantly decreased compared with preoperative angles (p=0.02). Multiple logistic regression analysis demonstrated that a THA history (odds ratio, 34.2), severe obesity (odds ratio, 14.0), and preoperative anterior disc height (odds ratio, 1.2) were significant risk factors for RFs.
Conclusions
In this study, the greatest risk factors for postoperative lumbosacral RF after ASD surgery were THA history, severe obesity, and postoperative anterior disc height of ≥10. For patients at higher risk, the use of multirods is considered necessary.
3.Association between Osteoporosis and Skeletal Muscle Mass in Men
Masaya MIZUTANI ; Yawara EGUCHI ; Toru TOYOGUCHI ; Sumihisa ORITA ; Kazuhide INAGE ; Yasuhiro SHIGA ; Satoshi MAKI ; Junichi NAKAMURA ; Shigeo HAGIWARA ; Yasuchika AOKI ; Masahiro INOUE ; Masao KODA ; Hiroshi TAKAHASHI ; Tsutomu AKAZAWA ; Seiji OHTORI
Asian Spine Journal 2024;18(1):73-78
Methods:
This study included 99 men (mean age, 74.9 years; range, 28–93 years) who visited Qiball Clinic for BMD and body composition examinations. The osteoporosis group consisted of 24 patients (mean age, 72.5 years; range, 44–92 years), and the control group consisted of 75 individuals (mean age, 74.9 years; range, 28–93 years). Whole-body skeletal muscle mass was measured using a bioelectrical impedance analyzer. BMD was measured by dual X-ray absorptiometry. Skin autofluorescence (SAF), a marker of dermal AGE accumulation, was measured using a spectroscope. Osteoporosis was defined as a bone density T score of –2.5 or less. Physical findings, skeletal muscle mass, BMD, grip strength, and SAF were compared between the osteoporosis and control groups.
Results:
The osteoporosis group had significantly lower trunk muscle mass (23.1 kg vs. 24.9 kg), lower leg muscle mass (14.4 kg vs. 13.0 kg), and skeletal mass index (7.1 kg/m2 vs. 6.7 kg/m2) than the control group (all p<0.05). Lower limb muscle mass was identified as a risk factor for osteoporosis in men (odds ratio, 0.64; p=0.03).
Conclusions
Conservative treatment of osteoporosis in men will require an effective approach that facilitates the maintenance or strengthening of skeletal muscle mass, including exercise therapy with a focus on lower extremities and nutritional supplementation.
4.Assessment of the Initial Diagnostic Accuracy of a Fragility Fracture of the Sacrum: A Study of 56 Patients
Ryo UMEDA ; Yasushi IIJIMA ; Nanako YAMAKAWA ; Toshiaki KOTANI ; Tsuyoshi SAKUMA ; Shunji KISHIDA ; Keisuke UENO ; Daisuke KAJIWARA ; Tsutomu AKAZAWA ; Yasuhiro SHIGA ; Shohei MINAMI ; Seiji OHTORI ; Koichi NAKAGAWA
Asian Spine Journal 2023;17(6):1066-1073
Methods:
Fifty-six patients (13 males and 43 females) with an average age of 80.2±9.2 years admitted to the hospital for FFS between 2006 and 2021 were analyzed retrospectively. The following patient data were collected using medical records: pain regions, a history of trauma, initial diagnoses, and rates of fracture detection using radiography, computed tomography (CT), and magnetic resonance imaging (MRI).
Results:
Forty-one patients presented with low back and/or buttock pain, nine presented with groin pain, and 17 presented with thigh or leg pain. There was no history of trauma in 18 patients (32%). At the initial visit, 27 patients (48%) were diagnosed with sacral or pelvic fragility fractures. In contrast, 29 patients (52%) were initially misdiagnosed with lumbar spine disease (23 patients), hip joint diseases (three patients), and buttock bruises (three patients). Fracture detection rates for FFS were 2% using radiography, 71% using CT, and 93% using MRI. FFS was diagnosed definitively using an MRI with a coronal short tau inversion recovery (STIR) sequence.
Conclusions
Some patients with FFS have leg pain with no history of trauma and are initially misdiagnosed as having lumbar spine disease, hip joint disease, or simple bruises. When these clinical symptoms are reported, we recommend considering FFS as one of the differential diagnoses and performing lumbar or pelvic MRIs, particularly coronal STIR images, to rule out FFS.
5.Improvements in Intractable Lumbar and LowerExtremity Symptoms after Systemic Administration of Tocilizumab, an Anti-interleukin-6 Receptor Antibody
Takeshi SAINOH ; Takeshi SAINOH ; Sumihisa ORITA ; Sumihisa ORITA ; Masayuki MIYAGI ; Masayuki MIYAGI ; Miyako SUZUKI-NARITA ; Miyako SUZUKI-NARITA ; Yoshihiro SAKUMA ; Yoshihiro SAKUMA ; Yasuhiro OIKAWA ; Yasuhiro OIKAWA ; Go KUBOTA ; Go KUBOTA ; Jun SATO ; Jun SATO ; Yasuhiro SHIGA ; Yasuhiro SHIGA ; Kazuki FUJIMOTO ; Kazuki FUJIMOTO ; Yawara EGUCHI ; Yawara EGUCHI ; Masao KODA ; Masao KODA ; Yasuchika AOKI ; Yasuchika AOKI ; Tsutomu AKAZAWA ; Tsutomu AKAZAWA ; Takeo FURUYA ; Takeo FURUYA ; Junichi NAKAMURA ; Junichi NAKAMURA ; Hiroshi TAKAHASHI ; Hiroshi TAKAHASHI ; Satoshi MAKI ; Satoshi MAKI ; Masahiro INOUE ; Masahiro INOUE ; Hideyuki KINOSHITA ; Hideyuki KINOSHITA ; Masaki NORIMOTO ; Masaki NORIMOTO ; Takashi SATO ; Takashi SATO ; Masashi SATO ; Masashi SATO ; Masahiro SUZUKI ; Masahiro SUZUKI ; Keigo ENOMOTO ; Keigo ENOMOTO ; Hiromitsu TAKAOKA ; Hiromitsu TAKAOKA ; Norichika MIZUKI ; Norichika MIZUKI ; Takashi HOZUMI ; Takashi HOZUMI ; Ryuto TSUCHIYA ; Ryuto TSUCHIYA ; Geundong KIM ; Geundong KIM ; Takuma OTAGIRI ; Takuma OTAGIRI ; Tomohito MUKAIHATA ; Tomohito MUKAIHATA ; Takahisa HISHIYA ; Takahisa HISHIYA ; Seiji OHTORI ; Seiji OHTORI ; Kazuhide INAGE ; Kazuhide INAGE
Asian Spine Journal 2022;16(1):99-106
Methods:
This prospective, single-arm study included 11 patients (eight men; mean age, 62.7 years) with ≥3-months’ chronic pain history due to lumbar disease. Subcutaneous TCZ injections were administered twice, at a 2-week interval. We evaluated low back pain, leg pain, and leg numbness using numeric rating scales and the Oswestry Disability Index (ODI; baseline and 6 months postinjection); serum IL-6 and tumor necrosis factor-α levels (baseline and 1 month postinjection); and clinical adverse events.
Results:
Intractable symptoms reduced after TCZ administration. Low back pain improved for 6 months. Improvements in leg pain and numbness peaked at 4 and 1 month, respectively. Improvements in ODI were significant at 1 month and peaked at 4 months. Serum IL-6 was increased at 1 month. IL-6 responders (i.e., patients with IL-6 increases >10 pg/mL) showed particularly significant improvements in leg pain at 2 weeks, 1 month, and 2 months compared with nonresponders. We observed no apparent adverse events.
Conclusions
Systemic TCZ administration improved symptoms effectively for 6 months, with peak improvements at 1–4 months and no adverse events. Changing serum IL-6 levels correlated with leg pain improvements; further studies are warranted to elucidate the mechanistic connections between lumbar disorders and inflammatory cytokines.
6.Usefulness of Simultaneous Magnetic Resonance Neurography and Apparent T2 Mapping for the Diagnosis of Cervical Radiculopathy
Keigo ENOMOTO ; Yawara EGUCHI ; Takashi SATO ; Masaki NORIMOTO ; Masahiro INOUE ; Atsuya WATANABE ; Takayuki SAKAI ; Masami YONEYAMA ; Yasuchika AOKI ; Sumihisa ORITA ; Miyako NARITA ; Kazuhide INAGE ; Yasuhiro SHIGA ; Tomotaka UMIMURA ; Masashi SATO ; Masahiro SUZUKI ; Hiromitsu TAKAOKA ; Norichika MIZUKI ; Geundong KIM ; Takashi HOZUMI ; Naoya HIROSAWA ; Takeo FURUYA ; Satoshi MAKI ; Junichi NAKAMURA ; Shigeo HAGIWARA ; Masao KODA ; Tsutomu AKAZAWA ; Hiroshi TAKAHASHI ; Kazuhisa TAKAHASHI ; Seiji OHTORI
Asian Spine Journal 2022;16(1):47-55
Methods:
A total of 14 patients with unilateral radicular symptoms and five healthy subjects were subjected to simultaneous apparent T2 mapping and neurography with nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement signaling (SHINKEI-Quant) using a 3-Tesla magnetic resonance imaging. The Visual Analog Scale (VAS) score for neck pain and upper arm pain was used to evaluate clinical symptoms. T2 relaxation times of the cervical dorsal root ganglia of the brachial plexus were measured bilaterally from C4 to C8 in patients with radicular symptoms and from C5 to C8 in healthy controls. The T2 ratio was calculated as the affected side to unaffected side.
Results:
When comparing nerve roots bilaterally at each spinal level, no significant differences in T2 relaxation times were found between patients and healthy subjects. However, T2 relaxation times of nerve roots in the patients with unilateral radicular symptoms were significantly prolonged on the involved side compared with the uninvolved side (p<0.05). The VAS score for upper arm pain was not significantly correlated with the T2 relaxation times, but was positively correlated with the T2 ratio.
Conclusions
In patients with cervical radiculopathy, the SHINKEI-Quant technique can be used to quantitatively evaluate the compressed cervical nerve roots. The VAS score for upper arm pain was positively correlated with the T2 ratio. This suggests that the SHINKEI-Quant is a potential tool for the diagnosis of cervical nerve entrapment.
7.Time-Course Changes in Bone Metabolism Markers and Density in Patients with Osteoporosis Treated with Romosozumab: A Multicenter Retrospective Study
Kazuhide INAGE ; Sumihisa ORITA ; Yawara EGUCHI ; Yasuhiro SHIGA ; Masao KODA ; Yasuchika AOKI ; Toshiaki KOTANI ; Tsutomu AKAZAWA ; Takeo FURUYA ; Junichi NAKAMURA ; Hiroshi TAKAHASHI ; Miyako SUZUKI-NARITA ; Satoshi MAKI ; Shigeo HAGIWARA ; Masahiro INOUE ; Masaki NORIMOTO ; Hideyuki KINOSHITA ; Takashi SATO ; Masashi SATO ; Keigo ENOMOTO ; Hiromitsu TAKAOKA ; Norichika MIZUKI ; Takashi HOZUMI ; Ryuto TSUCHIYA ; Geundong KIM ; Takuma OTAGIRI ; Tomohito MUKAIHATA ; Takahisa HISHIYA ; Seiji OHTORI
Yonsei Medical Journal 2021;62(9):829-835
Purpose:
In this multicenter retrospective observational study, we examined the early effects of romosozumab in patients with severe osteoporosis in terms of time-course changes in bone metabolism marker, improvement in bone density, and adverse effects.
Materials and Methods:
Patients with severe osteoporosis were included. We investigated the progress of TRACP 5b and P1NP before and 1–2 months after the administration of romosozumab. We also investigated the bone density of lumbar spine, femoral neck, and the entire femur, measured by the DXA method, before and 5–7 months after the administration of romosozumab.
Results:
A total of 70 patients (7 males and 63 females, age 75.0±3.6 years) participated in this study. Significant improvements in TRACP 5b and P1NP levels were observed before and 1–2 months after romosozumab administration. The average bone density of lumbar spine, femoral neck, and the entire femur were measured before and 5–7 months after romosozumab administration;and a significant increase only observed in the lumbar spine.
Conclusion
Consistent with the findings of previous clinical studies, romosozumab has both bone formation-enhancing and bone resorption effects (dual effect). In addition, romosozumab also demonstrated improvement in bone density from the early phase after the administration, though the result was only seen in the lumbar spine.
8.Relationship between Skeletal Muscle Mass, Bone Mineral Density, and Trabecular Bone Score in Osteoporotic Vertebral Compression Fractures
Soichiro TOKESHI ; Yawara EGUCHI ; Munetaka SUZUKI ; Hajime YAMANAKA ; Hiroshi TAMAI ; Sumihisa ORITA ; Kazuhide INAGE ; Yasuhiro SHIGA ; Shigeo HAGIWARA ; Junichi NAKAMURA ; Tsutomu AKAZAWA ; Hiroshi TAKAHASHI ; Seiji OHTORI
Asian Spine Journal 2021;15(3):365-372
A retrospective observational study was performed. We investigated the relationships between skeletal muscle mass, bone mineral density (BMD), and trabecular bone score (TBS) in patients with osteoporotic vertebral compression fractures (VCFs). The TBS has attracted attention as a measurement of trabecular bone microarchitecture. It is derived from data obtained using dual-energy X-ray absorptiometry (DXA) and is a reported indicator of VCFs, and its addition to the Fracture Risk Assessment Tool increases the accuracy of fracture prediction. BMD, skeletal muscle mass, and TBS were measured in 142 patients who visited Shimoshizu National Hospital from April to August 2019. Patients were divided into a VCF group and a non-VCF group. Whole-body DXA scans were performed to analyze body composition, including appendicular skeletal muscle mass index (SMI; lean mass [kg]/height [m2]) and BMD. The diagnostic criteria for sarcopenia was an appendicular SMI <5.46 kg/m2. A logistic regression analysis was conducted to identify the risk factors for VCFs. The significant ( Patients with VCFs had low BMD, a low TBS, and low skeletal muscle mass. Lower femoral BMD and decreased leg muscle mass were identified as risk factors for VCFs independent of age, whereas the TBS was not identified as a risk factor for VCFs.
9.Time-Course Changes in Bone Metabolism Markers and Density in Patients with Osteoporosis Treated with Romosozumab: A Multicenter Retrospective Study
Kazuhide INAGE ; Sumihisa ORITA ; Yawara EGUCHI ; Yasuhiro SHIGA ; Masao KODA ; Yasuchika AOKI ; Toshiaki KOTANI ; Tsutomu AKAZAWA ; Takeo FURUYA ; Junichi NAKAMURA ; Hiroshi TAKAHASHI ; Miyako SUZUKI-NARITA ; Satoshi MAKI ; Shigeo HAGIWARA ; Masahiro INOUE ; Masaki NORIMOTO ; Hideyuki KINOSHITA ; Takashi SATO ; Masashi SATO ; Keigo ENOMOTO ; Hiromitsu TAKAOKA ; Norichika MIZUKI ; Takashi HOZUMI ; Ryuto TSUCHIYA ; Geundong KIM ; Takuma OTAGIRI ; Tomohito MUKAIHATA ; Takahisa HISHIYA ; Seiji OHTORI
Yonsei Medical Journal 2021;62(9):829-835
Purpose:
In this multicenter retrospective observational study, we examined the early effects of romosozumab in patients with severe osteoporosis in terms of time-course changes in bone metabolism marker, improvement in bone density, and adverse effects.
Materials and Methods:
Patients with severe osteoporosis were included. We investigated the progress of TRACP 5b and P1NP before and 1–2 months after the administration of romosozumab. We also investigated the bone density of lumbar spine, femoral neck, and the entire femur, measured by the DXA method, before and 5–7 months after the administration of romosozumab.
Results:
A total of 70 patients (7 males and 63 females, age 75.0±3.6 years) participated in this study. Significant improvements in TRACP 5b and P1NP levels were observed before and 1–2 months after romosozumab administration. The average bone density of lumbar spine, femoral neck, and the entire femur were measured before and 5–7 months after romosozumab administration;and a significant increase only observed in the lumbar spine.
Conclusion
Consistent with the findings of previous clinical studies, romosozumab has both bone formation-enhancing and bone resorption effects (dual effect). In addition, romosozumab also demonstrated improvement in bone density from the early phase after the administration, though the result was only seen in the lumbar spine.
10.Relationship between Skeletal Muscle Mass, Bone Mineral Density, and Trabecular Bone Score in Osteoporotic Vertebral Compression Fractures
Soichiro TOKESHI ; Yawara EGUCHI ; Munetaka SUZUKI ; Hajime YAMANAKA ; Hiroshi TAMAI ; Sumihisa ORITA ; Kazuhide INAGE ; Yasuhiro SHIGA ; Shigeo HAGIWARA ; Junichi NAKAMURA ; Tsutomu AKAZAWA ; Hiroshi TAKAHASHI ; Seiji OHTORI
Asian Spine Journal 2021;15(3):365-372
A retrospective observational study was performed. We investigated the relationships between skeletal muscle mass, bone mineral density (BMD), and trabecular bone score (TBS) in patients with osteoporotic vertebral compression fractures (VCFs). The TBS has attracted attention as a measurement of trabecular bone microarchitecture. It is derived from data obtained using dual-energy X-ray absorptiometry (DXA) and is a reported indicator of VCFs, and its addition to the Fracture Risk Assessment Tool increases the accuracy of fracture prediction. BMD, skeletal muscle mass, and TBS were measured in 142 patients who visited Shimoshizu National Hospital from April to August 2019. Patients were divided into a VCF group and a non-VCF group. Whole-body DXA scans were performed to analyze body composition, including appendicular skeletal muscle mass index (SMI; lean mass [kg]/height [m2]) and BMD. The diagnostic criteria for sarcopenia was an appendicular SMI <5.46 kg/m2. A logistic regression analysis was conducted to identify the risk factors for VCFs. The significant ( Patients with VCFs had low BMD, a low TBS, and low skeletal muscle mass. Lower femoral BMD and decreased leg muscle mass were identified as risk factors for VCFs independent of age, whereas the TBS was not identified as a risk factor for VCFs.

Result Analysis
Print
Save
E-mail