1.Cucurbitacin B alleviates skin lesions and inflammation in a psoriasis mouse model by inhibiting the cGAS-STING signaling pathway.
Yijian ZHANG ; Xueting WANG ; Yang YANG ; Long ZHAO ; Huiyang TU ; Yiyu ZHANG ; Guoliang HU ; Chong TIAN ; Beibei ZHANG ; Zhaofang BAI ; Bin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):428-436
Objective To investigate the effects of cucurbitacin B (CucB) on alleviating skin lesions and inflammation in psoriasis mice via the cGAS-STING signaling pathway. Methods The expression of genes associated with the cGAS-STING signaling pathway in psoriatic lesions and non-lesional skin was analyzed, and hallmark gene set enrichment analysis was performed. The cytotoxicity of CucB on BMDMs was evaluated using the CCK-8 assay. The expression levels of genes and proteins related to the cGAS-STING signaling pathway, along with the secretion of inflammatory cytokines, were measured at different concentrations of CucB using quantitative PCR, Western blotting, and ELISA. Imiquimod-induced psoriasis BALB/c mice were divided into four groups: normal group, model group, low-dose CucB group [0.1 mg/ (kg.d)], and high-dose CucB group [0.4 mg/ (kg.d)], with five mice per group. PASI scoring was performed to assess the severity of psoriasis after 6 days of treatment, and HE staining was conducted to observe pathological damage. Meanwhile, the mRNA levels of inflammatory cytokines and their secretion were detected by qPCR and ELISA. Results Most cGAS-STING signaling-related genes were upregulated in lesional skin of psoriasis patients, and the hallmark gene set enrichment analysis revealed that the most significantly upregulated genes were primarily associated with immune response signaling pathways. CucB inhibited dsDNA-induced phosphorylation of interferon regulatory factor 3 (IRF3) and STING proteins in both bone-marrow derived macrophages(BMDMs) and THP-1 cells. CucB also suppressed dsDNA-induced mRNA expression of IFNB1, TNF, IFIT1, CXCL10, ISG15, and reduced the secretion of cytokines such as IFN-β, IL-1β, and TNF-α in THP-1 cells. In the imiquimod-induced psoriasis mouse model, CucB treatment reduced psoriatic symptoms, alleviated skin lesions, and attenuated inflammation. ELISA and qPCR results showed that CucB significantly reduced serum secretion levels of IL-6, TNF-α, and IL-1β, as well as the mRNA levels of IL23A, IL1B, IL6, TNF, and IFNB1. Conclusion CucB inhibits cytoplasmic DNA-induced activationc of the GAS-STING pathway. CucB significantly attenuates skin lesions and inflammation in IMQ-induced psoriatic mice, and the potential molecular mechanism may be related to the down-regulation of the cGAS-STING pathway.
Animals
;
Psoriasis/pathology*
;
Signal Transduction/drug effects*
;
Membrane Proteins/genetics*
;
Mice
;
Nucleotidyltransferases/genetics*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
;
Triterpenes/therapeutic use*
;
Humans
;
Cytokines/metabolism*
;
Inflammation/drug therapy*
;
Male
2.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
3.Historical evolution of Xuanfu Daizhe Decoction.
Sha-Sha LI ; You-Juan HOU ; Lei ZHANG ; Yan DONG ; Si-Hong LIU ; Bin LI ; Chu-Chu ZHANG ; Xiao-Ning YANG ; Rong-Li YOU ; Hai-Yu XU ; Bing LI
China Journal of Chinese Materia Medica 2022;47(15):4033-4041
Xuanfu Daizhe Decoction, first seen in Zhang Zhongjing's Treatise on Cold Damage Diseases, was composed of seven medicinal materials: Inulae Flos, Glycyrrhizae Radix, Ginseng Radix, Zingiberis Rhizoma Recens, Haematitum, Pinelliae Rhizoma and Jujubae Fructus. It was used to treat gastric fullness and hardness and belching due to the wrong treatment of typhoid fever and sweating. With detailed records and description in ancient medical books, Xuanfu Daizhe Decoction was widely adopted in clinical practice by physicians of later generations, which expanded its main therapeutic functions. By comprehensive collation of ancient and modern literature on Xuanfu Daizhe Decoction, this paper systematically explored the historical evolution of the prescription from the source, composition, dosage, processing, clinical application, function interpretation and decocting method. It was found that the composition and processing method of the prescription in the past dynasties were relatively consistent, and there was a gradual decrease in dosage in clinical application. In ancient times, Xuanfu Daizhe Decoction was mainly used to treat nausea, vomiting, hiccups, constipation, etc., while modern clinicians mainly used it for digestive diseases such as reflux esophagitis and gastritis. Through the analysis and textual research, the composition, dosage, processing, function evolution and decocting method of this prescription were determined, which provided reference for the research and development of compound preparations of Xuanfu Daizhe Decoction.
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Plant Extracts
;
Rhizome
;
Triterpenes
4.Effects of triterpenoid and iridoid of Eucommiae Cortex on collagen-induced arthritis in rats.
Li-Dong TANG ; Jian-Ying WANG ; Dan TAN ; Lei ZHANG ; Ying YUAN
China Journal of Chinese Materia Medica 2022;47(20):5591-5598
The ethyl acetate fraction of ethanol extract of Eucommiae Cortex can effectively inhibit joint inflammation and bone destruction in rats with collagen-induced arthritis(CIA) and has a potential therapeutic effect on rheumatoid arthritis. The triterpenoid(EU-Tid) and iridoid(EU-Idd) of Eucommiae Cortex are derivatives isolated from the ethyl acetate fraction of the ethanol extract of Eucommiae Cortex, and it is not clear whether they have inhibitory effects on joint inflammation and bone erosion in CIA rats. Therefore, based on the CIA model, the effects of EU-Tid, EU-Idd, and their combination(EU-TP) on arthritis in rats were observed, and the material basis of Eucommiae Cortex against arthritis was further clarified. The samples were collected two and four weeks after administration to observe the pathological changes in different stages of arthritis in CIA rats. For the rats in the model control group, with the prolongation of the disease course, the paw volume and arthritis score increased and histopathological lesions aggravated. Compared with the model control group, the drug administration groups showed reduced paw volumes and arthritis scores, and improved joint lesions and cartilage destruction. Additionally, the mRNA expression levels of tumor necrosis factor-α(TNF-α), interleukin-17(IL-17), and interleukin-23(IL-23) in the spleen were down-regulated in the drug administration groups. EU-TP and EU-Tid at concentrations of 160 and 320 μg·mL~(-1) could significantly inhibit the proliferation of human fibroblast-like synoviocytes-RA(HFLS-RA) and nitric oxide(NO) release in the supernatant of RAW264.7 cells induced by lipopolysaccharide(LPS) at the concentration range of 10-80 μg·mL~(-1) in vitro. EU-Idd had no effect on the proliferation of HFLS-RA but could reduce the NO release at concentrations of 40 and 80 μg·mL~(-1). The results indicated that the terpenoids of Eucommiae Cortex had great potential in the treatment of rheumatoid arthritis.
Rats
;
Humans
;
Animals
;
Arthritis, Experimental/drug therapy*
;
Iridoids/pharmacology*
;
Triterpenes/therapeutic use*
;
Arthritis, Rheumatoid/drug therapy*
;
Tumor Necrosis Factor-alpha
;
Plant Extracts/pharmacology*
;
Inflammation/drug therapy*
;
Ethanol
;
Cytokines
5.Astragaloside Ⅳ inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization.
Xintian ZHENG ; Haiyan GAN ; Lin LI ; Xiaowei HU ; Yan FANG ; Lisheng CHU
Journal of Zhejiang University. Medical sciences 2020;49(6):679-686
OBJECTIVE:
To investigate the effects of astragaloside Ⅳ (AS-Ⅳ) on microglia/macrophage M1/M2 polarization and inflammatory response after cerebral ischemia in rats.
METHODS:
Forty eight male SD rats were randomly divided into sham operation control group, model control group and AS-Ⅳ group with 16 rats in each. Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery (MCAO) using the intraluminal filament. After ischemia induced, the rats in AS-Ⅳ group were intraperitoneally injected with 40 mg/kg AS-Ⅳ once a day for 3 days. The neurological functions were evaluated by the modified neurological severity score (mNSS) and the corner test on d1 and d3 after modelling. The infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining on d3 after ischemia. The expression of M1 microglia/macrophage markers CD86, inducible nitric oxide synthase (iNOS) and pro-inflammatory factors TNF-α, IL-1β, IL-6, M2 microglia/macrophages markers CD206, arginase-1 (Arg-1), chitinase-like protein (YM1/2) and anti-inflammatory factors interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) was detected by real-time RT-PCR. The expression of CD16/32/Iba1 and CD206/Iba1 was determined by double labeling immunefluorescence method in the peripheral area of cerebral ischemia.
RESULTS:
Compared with model control group, AS-Ⅳ treatment improved neurological function recovery and reduced infarct volume after ischemia (
CONCLUSIONS
The findings suggest that AS-Ⅳ ameliorates brain injury after cerebral ischemia in rats, which may be related to inhibiting inflammation through promoting the polarization of the microglia/macrophage from M1 to M2 phenotype in the ischemic brain.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Brain Ischemia/drug therapy*
;
Cell Polarity/drug effects*
;
Inflammation/drug therapy*
;
Macrophages/drug effects*
;
Male
;
Microglia/drug effects*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
6.Ursolic Acid Prevents Retinoic Acid-Induced Bone Loss in Rats.
Min CHENG ; Xu-Hua LIANG ; Qing-Wei WANG ; Ya-Ting DENG ; Zhi-Xin ZHAO ; Xue-Ying LIU
Chinese journal of integrative medicine 2019;25(3):210-215
OBJECTIVE:
To examine the effects of ursolic acid (UA) on mitigating retinoic acid (RA)-induced osteoporosis in rats.
METHODS:
Fifty female Sprague-Dawley rats were randomly divided into the control group (n=10) and the osteoporosis group (n=40). The 40 osteoporosis rats were induced by 75 mg/(kg•d) RA once daily for 2 weeks, and then were randomly assigned to vehicle control (model), low-, middle-, and high-dose UA [(UA-L, UA-M, UA-H; 30, 60, 120 mg/(kg•d), respectively] groups (10 rats each). UA were administered once daily to the rats from the 3rd weeks for up to 4 weeks by gavage. Bone turnover markers [serum alkaline phosphatase (ALP), osteocalcin (OCN), urine deoxypyridinoline (DPD)] and other parameters, including serum calcium (S-Ca), serum phosphorus (S-P), urine calcium (U-Ca), urine phosphorus (U-P), and bone mineral density (BMD) of the femur, 4th lumbar vertebra and tibia, bone biomechanical properties and trabecular microarchitecture, were measured.
RESULTS:
The osteoporosis in rats was successfully induced by RA. Compared with the model group, UA-M and UA-H significantly reversed the RA-induced changes in S-P, U-Ca, U-P, ALP, OCN and urine DPD ratio and markedly enhanced the BMD of right femur, 4th lumbar vertebra and tibia (Plt;0.05 or Plt;0.01). Further, biomechanical test and microcomputed tomography evaluation also showed that UA-H drastically improved biomechanical properties and trabecular microarchitecture (Plt;0.05 or Plt;0.01).
CONCLUSION
UA could promote bone formation, increase osteoblastic activity and reduce osteoclastic activity in rats, indicating that UA might be a potential therapeutic of RA-induced acute osteoporosis.
Animals
;
Biomechanical Phenomena
;
Bone Density
;
drug effects
;
Bone Remodeling
;
drug effects
;
Female
;
Osteoporosis
;
diagnostic imaging
;
drug therapy
;
Rats
;
Rats, Sprague-Dawley
;
Tretinoin
;
toxicity
;
Triterpenes
;
pharmacology
;
therapeutic use
;
X-Ray Microtomography
7.Secondary metabolites of petri-dish cultured Antrodia camphorata and their hepatoprotective activities against alcohol-induced liver injury in mice.
Yu WU ; Wen-Jing TIAN ; Shuo GAO ; Zu-Jian LIAO ; Guang-Hui WANG ; Jir-Mehng LO ; Pei-Hsin LIN ; De-Quan ZENG ; Da-Ren QIU ; Xiang-Zhong LIU ; Mi ZHOU ; Ting LIN ; Hai-Feng CHEN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):33-42
Antrodia camphorata, a well-known and highly valued edible medicinal mushroom with intriguing activities like liver protection, has been traditionally used for the treatment of alcoholic liver disease. A. camphorata shows highly medicinal and commercial values with the demand far exceeds the available supply. Thus, the petri-dish cultured A. camphorata (PDCA) is expected to develope as a substitute. In this paper, nineteen triterpenes were isolated from PDCA, and thirteen of them were the unique anthroic acids in A. camphorata, including the main content antcin K, which suggested that PDCA produced a large array of the same anthroic acids as the wild one. Furthermore, no obvious acute toxicity was found suggesting the edible safety of PDCA. In mice alcohol-induced liver injury model, triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) had been reduced by the PDCA powder as well as the main content antcin K, which indicated that the PDCA could protect alcoholic liver injury in mice model and antcin K could be the effective component responsible for the hepatoprotective activities of PDCA against alcoholic liver diseases.
Alanine Transaminase
;
blood
;
Aldehyde Dehydrogenase
;
blood
;
Animals
;
Antrodia
;
chemistry
;
Aspartate Aminotransferases
;
blood
;
Biological Products
;
chemistry
;
pharmacology
;
therapeutic use
;
Chemical and Drug Induced Liver Injury
;
etiology
;
prevention & control
;
Cholestenes
;
chemistry
;
pharmacology
;
therapeutic use
;
Cholesterol, VLDL
;
blood
;
Disease Models, Animal
;
Ethanol
;
toxicity
;
Female
;
Fruiting Bodies, Fungal
;
chemistry
;
Liver
;
drug effects
;
metabolism
;
pathology
;
Liver Diseases, Alcoholic
;
prevention & control
;
Male
;
Malondialdehyde
;
blood
;
Mice
;
Molecular Structure
;
Triglycerides
;
blood
;
Triterpenes
;
chemistry
;
pharmacology
;
therapeutic use
8.Ilexgenin A enhances the effects of simvastatin on non-alcoholic fatty liver disease without changes in simvastatin pharmacokinetics.
Ya-Wen LU ; Ying-Chao ZHU ; Li ZHANG ; Ping LI ; Jie YANG ; Xiao-Dong WEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):436-445
Cardiovascular disease (CVD) is the most common cause of death in patients with non-alcoholic fatty liver disease (NAFLD). New therapeutic strategies which have the potential for slowing down the evolution of NAFLD and reducing CVD-related mortality are urgently needed. Statins are well recognized in the treatment of dyslipidemia, but their use in the treatment of NAFLD is limited due to the safety concerns. Ilexgenin A (IA) is one of the main bioactive compounds in 'Shan-lv-cha', an herbal tea commonly used in China. In the present study, we investigated the possible synergistic therapeutic effects of IA and simvastatin (SV) on NAFLD. IA or SV showed beneficial effects on the rats with NAFLD by lowering the liver weight, liver index and plasma levels of alanine aminotransferase and aspartate aminotransferase, regulating abnormal metabolism of lipids and ameliorating steatosis in liver. IA significantly enhanced the hypolipidemic and anti-inflammation effects of SV. Furthermore, a sensitive, accurate, convenient and reproducible LC-MS method was developed to investigate the effects of IA on the pharmacokinetics of SV. No significant changes were observed in pharmacokinetic parameters of SV and simvastatin hydroxy acid in the IA plus SV co-treated group in comparison with those in the group treated with SV alone. The mRNA levels and activity of CYP3A1 were not altered by IA. In conclusion, the results obtained from the present study should be helpful for further clinical application of SV and IA alone or in combination.
Alanine Transaminase
;
metabolism
;
Animals
;
Aspartate Aminotransferases
;
metabolism
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Diet, High-Fat
;
Disease Models, Animal
;
Drug Synergism
;
Drug Therapy, Combination
;
Lipids
;
blood
;
Liver
;
metabolism
;
pathology
;
physiopathology
;
Male
;
Molecular Structure
;
Non-alcoholic Fatty Liver Disease
;
blood
;
drug therapy
;
Rats
;
Rats, Sprague-Dawley
;
Simvastatin
;
analogs & derivatives
;
pharmacokinetics
;
therapeutic use
;
Transcription, Genetic
;
Triterpenes
;
chemistry
;
therapeutic use
9.Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression.
Wei-Guang YU ; Yong SHEN ; Jian-Zhong WU ; Yan-Bing GAO ; Li-Xing ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):330-338
Fibroblast-like synoviocytes (FLS) play a pivotal role in Rheumatoid arthritis (RA) pathogenesis through aggressive migration and invasion. Madecassoside (Madec), a triterpenoid saponin present in Centella asiatica herbs, has a potent anti-inflammatory effect. In the present study, Madec exerted an obvious therapeutic effect in reversing the histological lesions in adjuvant-induced arthritis (AIA) rats. To recognize the anti-rheumatoid potentials of Madec, we further investigated whether Madec interfered with FLS invasion and metalloproteinase (MMP) expression. In cultures of primary FLS isolated from the AIA rats, Madec (10 and 30 μmol·L) was proven to considerably inhibit migration and invasion of FLS induced by interleukin 1β (IL-1β), but exhibiting no obvious effect on cell proliferation. Madec repressed IL-1β-triggered FLS invasion by prohibiting the expression of MMP-13. Additionally, Madec suppressed MMP-13 transcription via inhibiting the MMP-13 promoter-binding activity of NF-κB. Our results further showed that Madec down-regulated the translocation and phosphorylation of NF-κB as demonstrated by Western blotting and immunofluorescence assays. In conclusion, our results suggest that Madec exerts anti-RA activity via inhibiting the NF-κB/MMP-13 pathway.
Animals
;
Antirheumatic Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
pathology
;
Cell Movement
;
drug effects
;
Cell Nucleus
;
metabolism
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
Matrix Metalloproteinase 13
;
genetics
;
NF-kappa B
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Protein Transport
;
drug effects
;
Rats
;
Signal Transduction
;
drug effects
;
Synoviocytes
;
drug effects
;
metabolism
;
Transcriptional Activation
;
drug effects
;
Triterpenes
;
chemistry
;
pharmacology
;
therapeutic use
10.A new γ-alkylated-γ-butyrolactone from the roots of Solanum melongena.
Jing SUN ; Hui-Xia HUO ; Zheng HUANG ; Jing ZHANG ; Jun LI ; Peng-Fei TU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(9):699-703
A new γ-alkylated-γ-butyrolactone, named melongenolide A (1), along with nine known compounds were obtained from the roots of Solanum melongena, and their structures were identified as melongenolide A (1), (+)-syringaresinol (2), (+)-lyoniresinol (3), 5,5'-dimethoxy lariciresinol (4), (+)-(7R,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7, 9-diol-7'-aldehyde (5), kaempferol-3-O-(2″,6″-di-O-p-trans-coumaroyl)-β-glucoside (6), arjunolic acid (7), vanillic acid (8), scoparone (9), and β-sitosterol (10). Compounds 2, 6, and 7 showed potent inhibitory effects on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophages, with IC50 values being 5.62 ± 0.86, 11.47 ± 0.98, and 27.75 ± 1.26 μmol·L(-1), respectively.
4-Butyrolactone
;
analogs & derivatives
;
isolation & purification
;
Animals
;
Furans
;
isolation & purification
;
pharmacology
;
Inflammation
;
drug therapy
;
metabolism
;
Inhibitory Concentration 50
;
Kaempferols
;
isolation & purification
;
pharmacology
;
Lignans
;
isolation & purification
;
pharmacology
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Nitric Oxide
;
metabolism
;
Plant Extracts
;
chemistry
;
pharmacology
;
therapeutic use
;
Plant Roots
;
chemistry
;
RAW 264.7 Cells
;
Solanum melongena
;
chemistry
;
Triterpenes
;
isolation & purification
;
pharmacology

Result Analysis
Print
Save
E-mail