1.The novel combination of astragaloside IV and formononetin protects from doxorubicin-induced cardiomyopathy by enhancing fatty acid metabolism.
Xinyue YU ; Zhaodi HAN ; Linling GUO ; Shaoqian DENG ; Jing WU ; Qingqing PAN ; Liuyi ZHONG ; Jie ZHAO ; Hui HUI ; Fengguo XU ; Zunjian ZHANG ; Yin HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1171-1182
Astragali Radix (AR), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy against various diseases, including cardiovascular conditions, over centuries of use. While doxorubicin serves as an effective chemotherapeutic agent against multiple cancers, its clinical application remains constrained by significant cardiotoxicity. Research has indicated that AR exhibits protective properties against doxorubicin-induced cardiomyopathy (DIC); however, the specific bioactive components and underlying mechanisms responsible for this therapeutic effect remain incompletely understood. This investigation seeks to identify the protective bioactive components in AR against DIC and elucidate their mechanisms of action. Through network medicine analysis, astragaloside IV (AsIV) and formononetin (FMT) were identified as potential cardioprotective agents from 129 AR components. In vitro experiments using H9c2 rat cardiomyocytes revealed that the AsIV-FMT combination (AFC) effectively reduced doxorubicin-induced cell death in a dose-dependent manner, with optimal efficacy at a 1∶2 ratio. In vivo, AFC enhanced survival rates and improved cardiac function in both acute and chronic DIC mouse models. Additionally, AFC demonstrated cardiac protection while maintaining doxorubicin's anti-cancer efficacy in a breast cancer mouse model. Lipidomic and metabolomics analyses revealed that AFC normalized doxorubicin-induced lipid profile alterations, particularly by reducing fatty acid accumulation. Gene knockdown studies and inhibitor experiments in H9c2 cells demonstrated that AsIV and FMT upregulated peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and PPARα, respectively, two key proteins involved in fatty acid metabolism. This research establishes AFC as a promising therapeutic approach for DIC, highlighting the significance of multi-target therapies derived from natural herbals in contemporary medicine.
Animals
;
Doxorubicin/adverse effects*
;
Saponins/administration & dosage*
;
Isoflavones/pharmacology*
;
Rats
;
Cardiomyopathies/prevention & control*
;
Mice
;
Fatty Acids/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/administration & dosage*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Cardiotonic Agents/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Line
;
Astragalus Plant/chemistry*
;
Astragalus propinquus
2.Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du decoction by UHPLC-Q-Exactive-Orbitrap HRMS.
Wei LIU ; Jian HUANG ; Feng ZHANG ; Cong-Cong ZHANG ; Rong-Sheng LI ; Yong-Li WANG ; Chao-Ran WANG ; Xin-Miao LIANG ; Wei-Dong ZHANG ; Ling YANG ; Ping LIU ; Guang-Bo GE
Chinese Journal of Natural Medicines (English Ed.) 2021;19(4):305-320
Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.
Administration, Oral
;
Alkaloids/analysis*
;
Animals
;
COVID-19
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Flavonoids/analysis*
;
Mice
;
SARS-CoV-2
;
Saponins/analysis*
;
Triterpenes/analysis*
3.Buyang Huanwu Decoction ameliorates ischemic stroke by modulating multiple targets with multiple components: In vitro evidences.
Wei-Wei ZHANG ; Feng XU ; Ding WANG ; Jia YE ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):194-202
Buyang Huanwu Decoction (BYHWD) is a well-known traditional Chinese medicine prescription which is used to treat ischaemic stroke and stroke-induced disabilities. However, the exact mechanism underlying BYHWD's amelioration of ischaemic stroke and its effective constituents remain unclear. The present study aimed to identify the effective constituents of BYHWD and to further explore its action mechanisms in the amelioration of ischaemic stroke by testing the activities of 15 absorbable chemical constituents of BYHWD with the same methods under the same conditions. The following actions of these 15 compounds were revealed: 1) Ferulic acid, calycosin, formononetin, astrapterocarpan-3-O-β-D-glucoside, paeonol, calycosin-7-O-β-D-glucoside, astraisoflavan-7-O-β-D-glucoside, ligustrazine, and propyl gallate significantly suppressed concanavalin A (Con A)-induced T lymphocyte proliferation; 2) Propyl gallate, calycosin-7-O-β-D-glucoside, paeonol, and ferulic acid markedly inhibited LPS-induced apoptosis in RAW264.7 cells; 3) Propyl gallate and formononetin significantly inhibited LPS-induced NO release; 4) Hydroxysafflor yellow A and inosine protected PC12 cells against the injuries caused by glutamate; and 5) Formononetin, astragaloside IV, astraisoflavan-7-O-β-D-glucoside, inosine, paeoniflorin, ononin, paeonol, propyl gallate, ligustrazine, and ferulic acid significantly suppressed the constriction of the thoracic aorta induced by KCl in rats. In conclusion, the results from the present study suggest that BYHWD exerts its ischaemic stroke ameliorating activities by modulating multiple targets with multiple components.
Animals
;
Apoptosis
;
drug effects
;
Brain Ischemia
;
drug therapy
;
physiopathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Glucosides
;
administration & dosage
;
analysis
;
Isoflavones
;
administration & dosage
;
analysis
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Monoterpenes
;
administration & dosage
;
analysis
;
PC12 Cells
;
RAW 264.7 Cells
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
administration & dosage
;
analysis
;
Stroke
;
drug therapy
;
physiopathology
;
Triterpenes
;
administration & dosage
;
analysis
4.Rat intestine absorption kinetics study on cucurbitacin B-sodium deoxycholate/phospholipid mixed nanomicelles with in vitro everted gut sacs model.
Ling CHENG ; Bao-de SHEN ; Juan-juan LI ; Ling QIU ; Gang SHEN ; Li-hong ZHANG ; Jin HAN ; Hai-long YUAN
China Journal of Chinese Materia Medica 2015;40(14):2876-2881
To investigate the absorption kinetics of Cu B-SDC/PLC-MMs in rat different intestinal segments and compared with the absorption of Cu B suspension. The in vitro everted gut sacs model was established to study the absorption characteristics of Cu B-SDC/ PLC-MMs in rat duodenum, jejunum, ileum and colon, and the content of cucurbitacin B was detected by HPLC method, and the effects of concentrations on intestinal absorption were evaluated as well. The results showed that the absorption of Cu B-SDC/PLC-MMs was linearity at different intestine segment and different concentrations (R2 > 0.9), which was consistent with zero order rate process. The Ka of different intestine segments showed a concentration-dependent increasing along with the raised concentration of Cu B-SDC/ PLC-MMs, indicating that it was likely to be a mechanism of passive absorption. The best absorption site of Cu B-SDC/PLC-MMs was ileum, and its absorptions in different intestinal segments were superior to cucurbitacin B suspension. SDC/PLC-MMs could significantly enhance the intestinal absorption of cucurbitacin B, and the study of intestinal absorption kinetics of Cu B-SDC/PLC-MMs had gave a support to its further reasonable solidfication.
Animals
;
Deoxycholic Acid
;
administration & dosage
;
Female
;
Intestinal Absorption
;
Kinetics
;
Male
;
Micelles
;
Nanoparticles
;
Phospholipids
;
administration & dosage
;
Rats
;
Rats, Wistar
;
Triterpenes
;
administration & dosage
;
pharmacokinetics
5.Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.
Vijeta BOBADE ; Subhash L BODHANKAR ; Urmila ASWAR ; Mohan VISHWARAMAN ; Prasad THAKURDESAI
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):274-282
The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.
Administration, Intranasal
;
Administration, Oral
;
Animals
;
Bradykinin
;
Female
;
Hyperalgesia
;
chemically induced
;
prevention & control
;
Male
;
Migraine Disorders
;
chemically induced
;
prevention & control
;
Models, Animal
;
Nitroglycerin
;
Nociception
;
drug effects
;
Plant Leaves
;
chemistry
;
Pre-Exposure Prophylaxis
;
Rats
;
Rats, Wistar
;
Reaction Time
;
Receptors, Serotonin, 5-HT1
;
drug effects
;
Serotonin 5-HT1 Receptor Antagonists
;
metabolism
;
Tail
;
physiology
;
Triterpenes
;
administration & dosage
;
pharmacology
6.Biochemical regulatory mechanism of asiaticoside in preventing and treating stent restenosis.
Shi-Qiang HOU ; Ming FANG ; Sha-Sha CHEN ; Xin-Peng CONG ; Da-Dong ZHANG ; Xin-Ming LI
China Journal of Chinese Materia Medica 2014;39(8):1479-1484
OBJECTIVETo discuss whether asiaticosides could effectively reduce the endothelial cell damage as a biochemical modulator, so as to further inhibit the post-stenting intima-media membrane hyperplasia.
METHODHuman aortic smooth muscle cells and aortic fibroblasts were selected and divided into the blank group, the rapamycin group and the asiaticoside group and the rapamycin and asiaticoside group. The expressions of muscle cells and fibroblasts TGF-beta1, Smad7 and I-collagen gene were determined by RT-PCR. The expression quantity of I-collagen protein was assayed by ELISA. The coefficient of drug interaction (CDI) between rapamycin and asiaticoside was calculated. Additionally, 16 Chinese mini-swines were randomly divided into group A and group B. One sirolimus drug-eluting stent of the same type was implanted after the high-pressure pre-expansion of anterior descending artery balloon. After the operation, the group A was intravenously injected with normal saline 30 mL x d(-1). Whereas the group B was intravenously injected with asiaticoside 30 mg x kg(-1) x d(-1)(diluted to 30 mL). The expressions of plasma vWF of the two groups were measured at the 7th and 14th days after the operation. At the 28th day after the operation, tissues of the stented vessel segments were sliced and stained to calculate the vessel area, inner stent area, lumen area and neointima area
RESULTCompared with the control group, the combination group showed significant up-regulation in smooth muscle cells and fibroblast Smad7 gene, down-regulation in TGF-beta, and obvious inhibition of I-collagen gene expression (P < 0.01). As for smooth muscle cells, there was no difference in the expression of I-collagen between the combination group and the rapamycin group, with CDI at 0. 83. As for fibroblasts, there was a significant difference in the expression of I-collagen between the combination group and the rapamycin group (P < 0.05), with CDI at 0.77. Plasma vWF of the group B was significantly lower than that of the group A (P < 0.05) at the 7th and 14th days after the operation. At the 28th day after the operation, no difference was observed in vessel area and stent area between the two groups. However, the lumen area in the group B was significantly larger than that of the group A(P < 0.05), and the neointima area of the group B was significantly smaller than that of the group A (P < 0.05).
CONCLUSIONAs an effective biochemical modulator for rapamycin, asiaticosides could inhibit TGF-beta expression, significantly decrease the synthesis and secretion of extracellular matrix, further inhibit the post-stenting intima-media membrane hyperplasia and reduce the endothelial cell damage by effectively up-regulate the expression of Smad7 protein.
Animals ; Collagen ; genetics ; metabolism ; Coronary Restenosis ; drug therapy ; prevention & control ; surgery ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Hyperplasia ; drug therapy ; genetics ; metabolism ; prevention & control ; Smad7 Protein ; genetics ; metabolism ; Stents ; adverse effects ; Swine ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Triterpenes ; administration & dosage
7.Preparation and characterization of cucurbitacin B sodium deoxycholate/phospholipid-mixed oral fast dissolving film and antitumor activity study.
Chao YU ; Yun-Zhi XIAO ; Ping-Hua XUN ; Ling DAI ; Jin HAN ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2014;39(10):1799-1804
A novel drug delivery system combining oral fast dissolving film with sodium deoxycholate/phospholipid mixed micelles was prepared to increase the absorption of cucurbitacin B that is a poor aqueous solubility substance. Encapsulation efficiency, particle size, zeta potential, polydispersity coefficient, investigated the morphology, disintegration time of oral fast dissolving film and the pharmacodynamic properties of cucurbitacin B sodium deoxycholate/phospholipid-mixed micelles before and after solidified in mice were evaluated and compared. The oral fast dissolving film prepared in this study showed a homogeneous pale yellow and could completely disintegrated in the 30 s. It could meet the requirements of rapidly disintegrating fully. The encapsulation efficiency, particle size, zeta potential, polydispersity coefficient of cucurbitacin B sodium deoxycholate/phospholipid-mixed micelles loaded in oral fast dissolving film were (43.36 +/- 2.12)%, (108.82 +/- 5.2) nm, (-34.18 +/- 1.07) mV, 0.088 +/- 0.012, respectively. The encapsulation efficiency, particle size, zeta potential, polydispersity coefficient of cucurbitacin B sodium deoxycholate/phospholipid-mixed micelles in solution were (41.26 +/- 2.22)%, (181.82 +/- 4.48) nm, (-30.67 +/- 0.81) mV, 0.092 +/- 0.012, respectively. The difference of pharmacodynamics among film of cucurbitacin B-loaded micelles, cucurbitacin B-loaded micelles and free cucurbitacin B in vivo was compared. Solubility of cucurbitacin B loaded in sodium deoxycholate/phospholipid-mixed micelles has also been greatly improved. The tumor inhibition rate of cucurbitacin B loaded in sodium deoxycholate/phospholipid-mixed micelles was significantly improved and did not change significantly before and after solidified. These showed that the sodium deoxycholate/phospholipid-mixed micelles could enhance the antitumor activities of cucurbitacin B and the stability of cucurbitacin B sodium deoxycholate/phospholipid-mixed micelles was improved significantly after solidified by oral fast dissolving film technology without pharmacodynamic properties changed significantly.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
chemistry
;
Cell Line, Tumor
;
Deoxycholic Acid
;
chemistry
;
Drug Carriers
;
chemistry
;
Humans
;
Male
;
Mice
;
Neoplasms
;
drug therapy
;
Phospholipids
;
chemistry
;
Solubility
;
Triterpenes
;
administration & dosage
;
chemistry
8.Maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase.
Jun LIU ; Xue WANG ; Yu-Peng CHEN ; Li-Fei MAO ; Jing SHANG ; Hong-Bin SUN ; Lu-Yong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2014;12(4):259-265
AIM:
To investigate the molecular signaling mechanism by which the plant-derived, pentacyclic triterpene maslinic acid (MA) exerts anti-diabetic effects.
METHOD:
HepG2 cells were stimulated with various concentrations of MA. The effects of MA on glycogen phosphorylase a (GPa) activity and the cellular glycogen content were measured. Western blot analyses were performed with anti-insulin receptor β (IRβ), protein kinase B (also known as Akt), and glycogen synthase kinase-3β (GSK3β) antibodies. Activation status of the insulin pathway was investigated using phospho-IRβ, as well as phospho-Akt, and phospho-GSK3β antibodies. The specific PI3-kinase inhibitor wortmannin was added to the cells to analyze the Akt expression. Enzyme-linked immunosorbent assay (ELISA) was used to measure the effect of MA on IRβ auto-phosphorylation. Furthermore, the effect of MA on glycogen metabolism was investigated in C57BL/6J mice fed with a high-fat diet (HFD).
RESULTS:
The results showed that MA exerts anti-diabetic effects by increasing glycogen content and inhibiting glycogen phosphorylase activity in HepG2 cells. Furthermore, MA was shown to induce the phosphorylation level of IRβ-subunit, Akt, and GSK3β. The MA-induced activation of Akt appeared to be specific, since it could be blocked by wortmannin. Finally, MA treatment of mice fed with a high-fat diet reduced the model-associated adiposity and insulin resistance, and increased the accumulated hepatic glycogen content.
CONCLUSION
The results suggested that maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase.
Animals
;
Diabetes Mellitus
;
drug therapy
;
enzymology
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Enzyme Inhibitors
;
administration & dosage
;
Glycogen
;
metabolism
;
Glycogen Phosphorylase
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Hep G2 Cells
;
Humans
;
Insulin
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Signal Transduction
;
drug effects
;
Triterpenes
;
administration & dosage
9.An HPLC-MS/MS method for the quantitative determination of platycodin D in rat plasma and its application to the pharmacokinetics of Platycodi Radix extract.
Qin ZHAN ; Feng ZHANG ; Shou-Hong GAO ; Fei CAI ; Bo JIANG ; Lian-Na SUN ; Wan-Sheng CHEN
Chinese Journal of Natural Medicines (English Ed.) 2014;12(2):154-160
AIMS:
To develop an HPLC-MS/MS method for the quantification of platycodin D (PD) in rat plasma, and to acquire the main pharmacokinetic parameters of PD after oral administration of pure PD or of Platycodi Radix extract (PRE) containing PD.
METHOD:
Plasma samples were pretreated with solid-phase extraction using an Oasis® HLB SPE cartridge. Madecassoside was used as the internal standard (IS). Chromatographic separation was achieved on an ODS column (100 mm × 2.1 mm i.d., 3.5 μm) with a mobile phase consisting of acetonitrile/water (30 : 70, V/V) containing 0.1 mmol·L(-1) ammonium acetate at a flow rate of 0.25 mL·min(-1). The detection was performed on a triple quadruple tandem mass spectrometer using an electrospray ionization (ESI) source with a chromatographic run time of 3.0 min. The detection was operated by multiple reaction monitoring (MRM) of the transitions of m/z 1 223.6→469.2 for PD and of m/z 973.6→469.2 for madecassoside (IS), respectively.
RESULTS:
The calibration curve was linear from 5 to 2 000 ng·mL(-1) (r(2) >0.99) with a lower limit of quantification (LLOQ) of 5 ng·mL(-1). The intra- and inter-day precision (relative standard deviation, RSD) values were below 15% and the accuracy (relative error, RE) was from -15% to +15% at three quality control (QC) levels. Plasma concentrations of PD were determined for 24 h after i.v. administration of PD, and oral administration of PD and PRE, respectively. The absolute oral bioavailability of PD in rats was found to be (0.48 ± 0.19)% when administered PD, and to be (1.81 ± 0.89)% when administered PRE.
CONCLUSION
The developed HPLC-MS/MS method was successfully applied to assess the pharmacokinetic parameters and oral bioavailability of PD in rats after administration of PD and Platycodi Radix extract.
Administration, Oral
;
Animals
;
Biological Availability
;
Chromatography, High Pressure Liquid
;
methods
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacokinetics
;
Male
;
Plant Roots
;
chemistry
;
Platycodon
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
blood
;
pharmacokinetics
;
Tandem Mass Spectrometry
;
methods
;
Triterpenes
;
blood
;
pharmacokinetics
10.The protective effect of asiatic acid against oxygen-glucose deprivation/reoxygenation injury of PC12 cells.
Ju-ping YUAN ; Jian-ming LU ; Yuan LU
Acta Pharmaceutica Sinica 2013;48(11):1738-1742
To study the protective effect and preliminary mechanisms of asiatic acid against oxygen-glucose deprivation/reoxygenation (OGD/R) injury of PC12 cells, Na2S2O4 combined with low glucose induced damage of PC12 cells was served as OGD/R injury model in vitro. MTT method was used to evaluate cell survival. Ultraviolet spectrophotometry was performed to determine lactate dehydrogenase (LDH) leakage, lactic acid (LD) content, intracellular superoxide dismutase (SOD), malonyldialdehyde (MDA), and cellular Caspase-3 activity. Flow cytometry was applied to assay cell apoptosis. Na2S2O4 combined with low glucose induced significant cell survival rate decreasing compared with normal cells. Cell survival rate increasing, LDH leakage alleviating, LD producing inhibiting, SOD activity promotion, MDA content reducing, cell apoptotic rate decreasing and Caspase-3 activity inhibiting were observed when cells were preincubated with different concentration of asiatic acid (10, 1 and 0.1 micromol x L(-1)). Evident protective effect of asiatic acid against OGD/R injured PC12 cells was verified in our experiment, and the possible mechanisms were related to eliminating free radicals and inhibiting cell apoptosis.
Animals
;
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Cell Survival
;
drug effects
;
Centella
;
chemistry
;
Dose-Response Relationship, Drug
;
Glucose
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lactic Acid
;
metabolism
;
Malondialdehyde
;
metabolism
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Oxygen
;
metabolism
;
PC12 Cells
;
Pentacyclic Triterpenes
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Rats
;
Reperfusion Injury
;
metabolism
;
Superoxide Dismutase
;
metabolism

Result Analysis
Print
Save
E-mail