1.Roles and mechanisms of TRIM family proteins in the regulation of bone metabolism.
Jing YANG ; Rui-Qi HUANG ; Ke XU ; Mian-Mian YANG ; Xue-Jie YI ; Bo CHANG ; Ting-Ting YAO
Acta Physiologica Sinica 2025;77(3):472-482
Tripartite motif-containing (TRIM) family proteins are crucial E3 ubiquitin ligases that have garnered significant attention for their regulatory roles in bone metabolism in recent years. This article reviews the function and regulatory mechanisms of TRIM family proteins in bone metabolism, focusing on their dual roles in bone formation and resorption. It also provides a detailed analysis of signaling pathways and molecular mechanisms by which TRIM family members regulate the activities of osteoblasts and osteoclasts. Research findings suggest that modulating the expression or activity of TRIM family proteins could be beneficial for treating bone diseases such as osteoporosis. This review highlights the molecular mechanisms of TRIM family members in bone physiology and pathology, aiming to provide theoretical basis and scientific guidance for developing novel therapeutic strategies for bone diseases.
Humans
;
Ubiquitin-Protein Ligases/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Tripartite Motif Proteins/physiology*
;
Osteoclasts/metabolism*
;
Osteoblasts/metabolism*
;
Signal Transduction/physiology*
;
Osteogenesis/physiology*
2.The changes of p-Akt/MuRF1/FoxO1 proteins expressions in the conditions of training and immobilization in rats' gastrocnemius muscle.
Yan-Hong SU ; ; Zhe SU ; Kai ZHANG ; Qian-Kun YUAN ; Qiang LIU ; Shen LV ; Zhao-Hui WANG ; Wei ZOU
Acta Physiologica Sinica 2014;66(5):589-596
This study was aimed to investigate the changes of muscle protein synthesis and degradation under different movement conditions, so as to provide theoretical basis for muscle atrophy mechanism. Sprague Dawley (SD) rats were randomly divided into control, endurance training (treadmill training), hind limb overhanging and eccentric training (treadmill training, angle -16º) groups. The gastrocnemius muscles of rats were taken and weighed. The muscle was sectioned, and HE staining was employed to determine the cell's cross-sectional area. Protein expression of p-Akt was measured by immunohistochemistry; and the expressions of MuRF1 and FoxO1 were determined by Western blot. The results showed that, compared with control group, hind limb overhanging and eccentric training groups exhibited decreased muscle weight and cross-sectional area, but endurance training group did not show any changes. The expressions of p-Akt in endurance and eccentric training groups, not in hind limb overhanging group, were significantly higher than that in control group. Compared with that of control, MuRF1 protein remained unchanged in endurance training groups, but was increased in eccentric training and hind limb overhanging groups; FoxO1 protein was decreased in endurance training group, but was increased in eccentric training and hind limb overhanging groups. These results indicate that movement (endurance and eccentric training) can activate Akt expression, but does not increase muscle weight, whereas eccentric training and hind limb overhanging can increase the expressions of MuRF1 and FoxO1, and induce amyotrophy, suggesting MuRF1 and FoxO1 are major determinant factors in muscle atrophy.
Animals
;
Forkhead Transcription Factors
;
physiology
;
Hindlimb Suspension
;
Muscle Proteins
;
physiology
;
Muscle, Skeletal
;
physiology
;
Muscular Atrophy
;
physiopathology
;
Nerve Tissue Proteins
;
physiology
;
Physical Conditioning, Animal
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
physiology

Result Analysis
Print
Save
E-mail