1.Radix Panacis quinquefolii Extract Ameliorates Inflammatory Bowel Disease through Inhibiting Inflammation.
Xi-Xin WANG ; Hong-Yuan ZOU ; Yong-Na CAO ; Xuan-Ming ZHANG ; Meng SUN ; Peng-Fei TU ; Ke-Chun LIU ; Yun ZHANG
Chinese journal of integrative medicine 2023;29(9):825-831
OBJECTIVE:
To investigate the anti-inflammatory activity of Radix Panacis quinguefolii root extract (RPQE) and its therapeutic effects on inflammatory bowel disease (IBD).
METHODS:
The 72-hour post-fertilization zebrafish was used to generate the local and systematic inflammation models through tail-amputation and lipopolysaccharide (LPS)-induction (100 µ g/mL), respectively. The Tg(zlyz:EGFP) zebrafish was induced with 75 µ g/mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) for establishing the IBD model. The tail-amputated, LPS-, and TNBS-induced models were subjected to RPQE (ethanol fraction, 10-20 µ g/mL) administration for 12 and 24 h, respectively. Anti-inflammatory activity of RPQE was evaluated by detecting migration and aggregation of leukocytes and expression of inflammation-related genes. Meanwhile, TNBS-induced fish were immersed in 0.2% (W/V) calcein for 1.5 h and RPQE for 12 h before photographing to analyze the intestinal efflux efficiency (IEE). Moreover, the expression of inflammation-related genes in these fish was detected by quantitative polymerase chain reaction.
RESULTS:
Subject to RPQE administration, the migration and aggregation of leukocytes were significantly alleviated in 3 zebrafish models (P<0.01). Herein, RPQE ameliorated TNBS-induced IBD with respect to a significantly reduced number of leukocytes, improved IEE, and inhibited gene expression of pro-inflammatory factors (P<0.05 or P<0.01).
CONCLUSION
RPQE exhibited therapeutic effects on IBD by inhibiting inflammation.
Animals
;
Zebrafish
;
Lipopolysaccharides
;
Disease Models, Animal
;
Inflammatory Bowel Diseases/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Trinitrobenzenesulfonic Acid/adverse effects*
;
Colitis/drug therapy*
2.Deficiency in glutathione synthesis and reduction contributes to the pathogenesis of colitis-related liver injury.
Liangliang WANG ; Ruyue HAN ; Kaihong ZANG ; Pei YUAN ; Hongyan QIN
Journal of Central South University(Medical Sciences) 2022;47(3):271-279
OBJECTIVES:
Liver disease is the most common extra-intestinal manifestation of ulcerative colitis (UC), but the underlying pathogenesis is still not clarified. It is well accepted that the occurrence of UC-related liver disease has close correlation with immune activation, intestinal bacterial liver translocation, inflammatory cytokine storm, and the disturbance of bile acid circulation. The occurrence of UC-related liver disease makes the therapy difficult, therefor study on the pathogenesis of UC-related liver injury is of great significance for its prevention and treatment. Glutathione (GSH) shows multiple physiological activities, such as free radical scavenging, detoxification metabolism and immune defense. The synthesis and the oxidation-reduction all contribute to GSH antioxidant function. It is reported that the deficiency in hepatic GSH antioxidant function participates in multiple liver diseases, but whether it participates in the pathogenesis of UC-related liver injury is still not clear. This study aims to investigate the feature and underlying mechanism of GSH synthesis and oxidation-reduction function during the development of UC, which will provide useful information for the pathogenesis study on UC-related liver injury.
METHODS:
UC model was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-ethanol solution (5 mg/0.8 mL per rat, 50% ethanol) via intra-colonic administration in rats, and the samples of serum, liver, and colon tissue of rats were collected at the 3rd, 5th, and 7th days post TNBS. The severity degree of colitis was evaluated by measuring the disease activity index, colonic myeloperoxidase activity, and histopathological score, and the degree of liver injury was evaluated by histopathological score and the serum content of alanine aminotransferase. Spearman correlation analysis was also conducted between the degree of colonic lesions and index of hepatic histopathological score as well as serum aspartate aminotransferase level to clarify the correlation between liver injury and colitis. To evaluate the hepatic antioxidant function of GSH in UC rats, hepatic GSH content, enzyme activity of GSH peroxidase (GSH-Px), and GSH reductase (GR) were determined in rats at the 3rd, 5th, and 7th days post TNBS, and the protein expressions of glutamine cysteine ligase (GCL), GSH synthase, GSH-Px, and GR in the liver of UC rats were also examined by Western blotting.
RESULTS:
Compared with the control, the disease activity index, colonic myeloperoxidase activity, and histopathological score were all significantly increased at the 3rd, 5th, and 7th days post TNBS (all P<0.01), the serum aspartate aminotransferase level and hepatic histopathologic score were also obviously elevated at the 7th day post TNBS (all P<0.05). There was a significant positive correlation between the degree of liver injury and the severity of colonic lesions (P=0.000 1). Moreover, compared with the control, hepatic GSH content and the activity of GSH-Px and GR were all significantly decreased at the 3rd and 5th days post TNBS (P<0.05 or P<0.01), and the protein expressions of GCL, GSH-Px, and GR were all obviously down-regulated at the 3rd, 5th, and 7th days post TNBS (P<0.05 or P<0.01).
CONCLUSIONS
There is a significant positive correlation between the degree of liver injury and the severity of colonic lesions, and the occurrence of reduced hepatic GSH synthesis and decreased GSH reduction function is obviously earlier than that of the liver injury in UC rats. The reduced hepatic expression of enzymes that responsible for GSH synthesis and reduction may contribute to the deficiency of GSH synthesis and oxidation-reduction function, indicating that the deficiency in GSH antioxidant function may participate in the pathogenesis of UC related liver injury.
Animals
;
Antioxidants
;
Aspartate Aminotransferases
;
Colitis/chemically induced*
;
Colitis, Ulcerative/metabolism*
;
Colon/pathology*
;
Glutathione/biosynthesis*
;
Liver/metabolism*
;
Peroxidase/metabolism*
;
Rats
;
Trinitrobenzenesulfonic Acid
3.Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats.
Dan REN ; Jia-Ni LI ; Xin-Tong QIU ; Fa-Ping WAN ; Zhen-Yu WU ; Bo-Yuan FAN ; Ming-Ming ZHANG ; Tao CHEN ; Hui LI ; Yang BAI ; Yun-Qing LI
Neuroscience Bulletin 2022;38(4):342-358
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Animals
;
Anxiety/etiology*
;
Chronic Pain/etiology*
;
GABAergic Neurons
;
Gyrus Cinguli/metabolism*
;
Hyperalgesia/metabolism*
;
Pancreatitis, Chronic/pathology*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Trinitrobenzenesulfonic Acid/toxicity*
4.Protective effects of total saponins of
Xue Feng LIU ; Jing QIAO ; Jian de GAO ; Zheng Jun CHEN ; Xiong LIU
Chinese Journal of Applied Physiology 2021;37(4):397-401
5.Protective effect of procyanidin B2 on intestinal barrier and against enteritis in a mouse model of trinitrobenzene sulphonic acid-induced colitis.
Congqiao JIANG ; Pingsheng ZHU ; Yi SHI ; Wujun XIANG ; Sitang GE ; Zongbing ZHANG ; Lugen ZUO
Journal of Southern Medical University 2019;39(7):778-783
OBJECTIVE:
To investigate the protective effect of procyanidin B2 (PCB2) on the intestinal barrier and against enteritis in mice with trinitrobenzene sulphonic acid (TNBS)-induced colitis and explore the possible mechanism.
METHODS:
A mouse model of TNBS-induced colitis was established in male Balb/c mice aged 6-8 weeks. The successfully established mouse models were randomly divided into PCB2 treatment group (=10) and model group (=10) and were treated with daily intragastric administration of PCB2 (100 mg/kg, 0.2 mL) and 0.2 mL normal saline, respectively. After 4 weeks, the disease symptoms, intestinal inflammation, intestinal mucosal cell barrier function and the changes in PI3K/AKT signaling were evaluated using HE staining, immunofluorescence assay and Western blotting.
RESULTS:
The disease activity index of the mice was significantly lower and the mean body weight was significantly greater in PCB2 group than in the model group in the 3rd and 4th weeks of intervention ( < 0.05). The levels of colonic inflammation and intestinal mucosal inflammatory mediators IL-1β and TNF-α were significantly lower while IL-10 was significantly higher in PCB2 group than in the model group ( < 0.05). Compared with those in the model group, the mice in PCB2 treatment group showed a significantly lower positive rate of bacterial translocation in the mesenteric lymph nodes and a lower thiocyanate-dextran permeability of the intestinal mucosa ( < 0.05). Western blotting showed that PCB2 treatment significantly increased the expressions of claudin-1 and ZO-1 ( < 0.05) and significantly lowered the expression levels of p-PI3K and p-AKT in the intestinal mucosa as compared with those in the model group ( < 0.05).
CONCLUSIONS
PCB2 suppresses intestinal inflammation and protects intestinal mucosal functions and structural integrity by inhibiting intestinal PI3K/AKT signaling pathway, suggesting the potential of PCB2 as a new drug for Crohn's disease.
Animals
;
Biflavonoids
;
Catechin
;
Colitis
;
chemically induced
;
Colon
;
Enteritis
;
Intestinal Mucosa
;
Male
;
Mice
;
Phosphatidylinositol 3-Kinases
;
Proanthocyanidins
;
Trinitrobenzenesulfonic Acid
6.Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome.
Qi LV ; Kai WANG ; Si-Miao QIAO ; Yue DAI ; Zhi-Feng WEI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):161-174
Although the etiology of inflammatory bowel disease is still uncertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1β production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-1β, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and α-naphthoflavone (α-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.
Alkaloids
;
administration & dosage
;
Animals
;
Colitis
;
chemically induced
;
drug therapy
;
genetics
;
immunology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Inflammasomes
;
drug effects
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lindera
;
chemistry
;
Male
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B
;
genetics
;
immunology
;
Receptors, Aryl Hydrocarbon
;
agonists
;
genetics
;
metabolism
;
Trinitrobenzenesulfonic Acid
;
adverse effects
7.Therapeutic and immunoregulatory effect of GATA-binding protein-3/T-box expressed in T-cells ratio of astragalus polysaccharides on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.
Yong-Jian GAO ; Feng ZHU ; Jia-Ming QIAN ; Jia-Yuan DAI
Chinese journal of integrative medicine 2016;22(12):918-924
OBJECTIVETo analyze the immunological characteristics of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model and examine the therapeutic effects and mechanisms of Astragalus polysaccharides (APS) treatment.
METHODSThirty-two male specific pathogen free Spragne-Dawley rats were randomly equally assigned to four groups: control, TNBS, APS and prednisone groups. Experimental colitis was induced by enema administration of TNBS. Then rats were treated with APS (0.5 g•kg•day, once daily) or prednisone (1.0 mg•kg•day, once daily) by gavage for 14 days. Macroscopic lesion and histological damage were determined, and activity of myeloperoxidase (MPO) was measured in the colonic tissues. Expressions of T-box expressed in T-cells (T-bet) and GATA-binding protein-3 (GATA-3) were determined by immunohistochemistry analysis and western blot.
RESULTSBoth macroscopic lesion and histological colonic damage induced by TNBS were reduced by APS and prednisone treatment. These were accompanied by significant attenuation of MPO activity (P=0.03). TNBS intervention enhanced the expression of both GATA-3 and T-bet, but the expression of T-bet was significantly enhanced than that of GATA-3, resulting in significant reduction of GATA-3/T-bet ratio (P=0.025). APS administration enhanced the expression of T-bet (P=0.04) and GATA-3 (P=0.019) in comparison to TNBS group, and resulting in an up-regulated GATA-3/T-bet ratio. Prednisone treatment inhibited both expressions; however it also resulted in up-regulation of the GATA-3/T-bet ratio.
CONCLUSIONSThese results demonstrated that APS exerted a beneficial immune regulatory effect on experimental colitis. It promoted the expression of T helper cell 1 (Th1) and T helper cell 2 (Th2) specific transcription factors but ultimately favor a shift toward Th2 phenotype, suggesting that APS possessed therapeutic potential in experimental colitis.
Animals ; Astragalus Plant ; chemistry ; Blotting, Western ; Colitis ; drug therapy ; pathology ; Colon ; drug effects ; pathology ; GATA3 Transcription Factor ; metabolism ; Immunohistochemistry ; Immunomodulation ; drug effects ; Male ; Peroxidase ; metabolism ; Polysaccharides ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; T-Box Domain Proteins ; metabolism ; Trinitrobenzenesulfonic Acid
8.Experimental study of adipose-derived mesenchymal stem cells in the treatment of Crohn's disease.
Minghao XIE ; Xiaosheng HE ; Jinling ZHU ; Zhen HE ; Xiaowen HE ; Ping LAN ; Lei LIAN
Chinese Journal of Gastrointestinal Surgery 2015;18(1):58-64
OBJECTIVETo explore the efficacy of adipose-derived mesenchymal stem cells (ADMSCs) in a murine model of inflammatory bowel disease, and its potential mechanism.
METHODSMurine colitis mouse model of Crohn's disease(CD) was created by trinitrobenzene sulfonic acid(TNBS)-induced colitis. Seventy-five 6-8 weeks female BALB/c mice were randomly divided into 3 groups: control group, TNBS group and ADMSC group. To verify the therapeutic effect of ADMSC, real-time PCR and immunohistochemical staining were performed to measure inflammatory cytokines levels in colon tissues. The 10-day survival statuses were recorded after the infusion of ADMSCs.
RESULTSIntraperitoneal injection of ADMSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and increased survival(60% vs. 30%, P<0.05) in the TNBS-induced mouse model of CD. Compared with TNBS group, proinflammatory cytokines, including TNF-α, IL-12 and VEGF of ADMSC group were significantly reduced, with significant increase of IL-10 expression.
CONCLUSIONADMSCs can effectively repair the injury of colonitis through down-regulation of proinflammatory cytokines TNF-α, IL-12 and VEGF expression, and up-regulation of anti-inflammatory cytokine IL-10 expression, which may be a potential new alternative of cell-based therapy for CD.
Adipocytes ; Animals ; Colitis ; Crohn Disease ; Cytokines ; Disease Models, Animal ; Down-Regulation ; Female ; Inflammatory Bowel Diseases ; Mesenchymal Stromal Cells ; Mice ; Mice, Inbred BALB C ; Trinitrobenzenesulfonic Acid ; Up-Regulation
9.Efficacy of topical versus oral 5-aminosalicylate for treatment of 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in rats.
Jin LI ; Cheng CHEN ; Xiao-nian CAO ; Gui-hua WANG ; Jun-bo HU ; Jing WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):59-65
5-aminosalicylic acid (5-ASA) is drug of choice for the treatment of ulcerative colitis (UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mechanism of this medication. A flexible tube was inserted into the rat cecum to establish a topical administration model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC. A total of 60 rats were divided into sham operation group (receiving an enema of 0.9% saline solution instead of the TNBS solution via the tube), model group, topical 5-ASA group, oral Etiasa group (a release agent of mesalazine used as positive control) and oral 5-ASA group (n=12 each). Different treatments were administered 1 day after UC induction. The normal saline (2 mL) was instilled twice a day through the tube in the sham operation group and model group. 5-ASA was given via the tube in the topical 5-ASA group (7.5 g/L, twice per day, 100 mg/kg), and rats in the oral Etiasa group and oral 5-ASA group intragastrically received Etiasa (7.5 g/L, twice per day, 100 mg/kg) and 5-ASA (7.5 g/L, twice per day, 100 mg/kg), respectively. The body weight was recorded every day. After 7 days of treatment, blood samples were drawn from the heart to harvest the sera. Colonic tissues were separated and prepared for pathological and related molecular biological examinations. The concentrations of 5-ASA were detected at different time points in the colonic tissues, feces and sera in different groups by using the high pressure liquid chromatography (HPLC). The results showed that the symptoms of acute UC, including bloody diarrhea and weight loss, were significantly improved in topical 5-ASA-treated rats. The colonic mucosal damage, both macroscopical and histological, was significantly relieved and the myeloperoxidase activity was markedly decreased in rats topically treated with 5-ASA compared with those treated with oral 5-ASA or Etiasa. The mRNA and protein expression of IL-1β, IL-6, and TNF-α was down-regulated in the colonic tissue of rats topically treated with 5-ASA, significantly lower than those from rats treated with oral 5-ASA or Etiasa. The concentrations of 5-ASA in the colonic tissue were significantly higher in the topical 5-ASA group than in the oral 5-ASA and oral Etiasa groups. It was concluded that the topical administration of 5-ASA can effectively increase the concentration of 5-ASA in the colonic tissue, decrease the expression of proinflammatory cytokines, alleviate the colonic pathological damage and improve the symptoms of TNBS-induced acute UC in rats.
Administration, Oral
;
Administration, Topical
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
administration & dosage
;
pharmacology
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
metabolism
;
pathology
;
Down-Regulation
;
drug effects
;
Drug Administration Schedule
;
Gene Expression
;
drug effects
;
Immunohistochemistry
;
Interleukin-1beta
;
genetics
;
metabolism
;
Interleukin-6
;
genetics
;
metabolism
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mesalamine
;
administration & dosage
;
pharmacology
;
Peroxidase
;
metabolism
;
Rats
;
Rats, Wistar
;
Reverse Transcriptase Polymerase Chain Reaction
;
Time Factors
;
Treatment Outcome
;
Trinitrobenzenesulfonic Acid
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
10.Efficacy of thalidomide on trinitrobenzene sulfonate-induced colitis in young rats and its mechanism.
Jiahua XU ; Cuifang ZHENG ; Ying HUANG ; Yingjie LIANG
Chinese Medical Journal 2014;127(12):2368-2375
BACKGROUNDThalidomide could relieve clinical symptoms and intestinal mucosal lesions effectively in children with refractory inflammatory bowel disease (IBD) from the pre-clinical study. This study aimed to observe the therapeutic effect of thalidomide by the established animal model of IBD model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in Sprague-Dawley (SD) rats and to investigate the possible mechanism of action.
METHODSA total of 82 SD rats of about 4-5 weeks were randomly divided into three groups: the control group (25 rats), TNBS-treated group (29 rats), and thalidomide treatment group (28 rats). Daily activities were recorded. At least eight rats from each group were killed on the 4th, 7th, and 14th days. Morphological and histological changes in the colon were individually assessed. Serum was collected and the levels of TNF-α and interleukins (IL-1β and IL-10) were assayed by ELISA method. The expression of colonic mucosal nuclear factor (NF)-κB was assayed with the immunohistochemical method.
RESULTS(1) In the control group, diarrhea and rectal bleeding recovered rapidly and no death was recorded. In the TNBS-treated group, diarrhea and rectal bleeding persisted for a longer time. The mortality rate was 10.34% during the observation period. In the thalidomide treatment group, diarrhea and rectal bleeding persisted for a significantly shorter time than the TNBS-treated group (P < 0.01). The rats of this group also exhibited faster weight gain on day 7 compared with the TNBS-treated group but still lower than that of the control group. The mortality rate of the thalidomide treatment group was 3.57%. (2) Macroscopic and microscopic scores of the thalidomide-treated group were significantly lower than those of the TNBS model group on the 14th day (P < 0.01). These results suggested faster and better colonic recovery in the thalidomide-treated group. (3) NF-κB expression in the colonic mucosa of the control group was lower than in the others, mainly distributed in the cytoplasm. A large amount of intra-nuclear and cytoplasm staining was observed (more prominently intra-nuclear) in the TNBS model group and the thalidomide treatment group. On the 7th and 14th days, intra-nuclear NF-κB-containing cells in the thalidomide treatment group were still significantly lower than those in the TNBS model group (P < 0.01). (4) In the control group, the cellular inflammatory factors (TNF-α, IL-1β, and IL-10) were expressed at a low level while in the other two groups they were already expressed at a significantly higher level on day 4. On day 7 the expressions of TNF-α and IL-1β in the thalidomide treatment group were lower than in the TNBS model group. On day 14, the expressions of TNF-α and IL-1β in the thalidomide treatment group were significantly lower than in the TNBS model group (P < 0.05). On day 4, the IL-10 levels of the thalidomide treatment group became significantly elevated. The levels gradually decreased but still remained at a higher level. In the TNBS model group, the IL-10 expression peaked later than in the thalidomide treatment group.
CONCLUSIONSThalidomide was effective in the management of TNBS-induced colitis in young rats. This may be due to the suppression and down-regulation of NF-κB and the expression of the downstream inflammatory mediators (TNF-α and IL-1β). There is also indication that the expression of the anti-inflammatory cytokine (IL-10) is concomitantly up-regulated as well.
Animals ; Colitis ; chemically induced ; drug therapy ; metabolism ; Cytokines ; metabolism ; Inflammatory Bowel Diseases ; chemically induced ; drug therapy ; metabolism ; Interleukin-10 ; metabolism ; Interleukin-1beta ; metabolism ; NF-kappa B ; metabolism ; Rats ; Rats, Sprague-Dawley ; Thalidomide ; therapeutic use ; Trinitrobenzenesulfonic Acid ; toxicity ; Tumor Necrosis Factor-alpha ; metabolism

Result Analysis
Print
Save
E-mail