1.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
OBJECTIVE:
To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
METHODS:
Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
RESULTS:
The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
CONCLUSION
VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
Rats
;
Animals
;
Chondrocytes/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Collagen Type II/metabolism*
;
Interleukin-6
;
Lipopolysaccharides/pharmacology*
;
NF-E2-Related Factor 2/pharmacology*
;
Inflammation/drug therapy*
;
Osteoarthritis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Dipeptides
;
para-Aminobenzoates
2.Effect mechanism of acupuncture for anti-asthmatic airway remodeling based on TGF-β1 / Smad3 signaling pathway.
Qian ZHANG ; Yun QIAO ; Yi-Rong SHI ; Ji-Li PANG ; Shi-Jun SONG ; Hong-Yuan TANG ; Le-Ming QIN ; Guo-Yuan ZENG
Chinese Acupuncture & Moxibustion 2023;43(6):684-690
OBJECTIVE:
To observe the effect of acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6) + "Yuji" (LU 10) for the airway remodeling in asthma rats based on the transforming growth factor-β1 (TGF-β1)/ Smad family member 3 (Smad3) signaling pathway; and explore the efficacy difference between the two acupoint combinations.
METHODS:
Forty SPF male SD rats, aged 4 weeks, were randomly divided into a blank group (n = 10) and a modeling group (n = 30). The ovalbumin (OVA) sensitization method was used to establish asthma model in the modeling group. After successful model preparation, the rats of the modeling group were randomized into a model group, an acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) (AAF) group, and acupuncture at "Kongzui" (LU 6)+"Yuji" (LU 10) (AAK) group, with 10 rats in each one. Starting from day 15 of the experiment, 5 min after motivating, acupuncture was applied to "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6)+"Yuji" (LU 10) in the AAF group and the AAK group respectively. The intervention was delivered for 30 min each time, once daily, lasting 3 weeks consecutively. Using lung function detector, the airway resistance (RL) and dynamic compliance (Cdyn) of the lungs were detected. The histomorphology of lung tissues was detected with HE staining and Masson staining, and the mRNA and protein expression of TGF-β1 and Smad3 in lung tissues was detected with the real-time PCR and Western blot methods.
RESULTS:
Compared with the blank group, RL was increased and Cdyn was decreased in the rats of the model group (P<0.01); and RL was reduced and Cdyn was increased in the AAF group and the AAK group when compared with those in the model group (P<0.01, P<0.05). The rats of the model group had bronchial lumen stenosis, inflammatory cell infiltration, collagen fibre hyperplasia and thickened smooth muscle in the lung tissues when compared with those in the blank group; and in comparison with the model group, all of the above morphological changes were attenuated in the AAF group and the AAK group. Besides, these morphological changes of the lung tissues were more alleviated in the AAF group when compared with those in the AAK group. In comparison with the blank group, the mRNA and protein expression of TGF-β1 and Smad3 of the lung tissues was increased in the model group (P<0.01), and it was reduced in the AAF group and the AAK group when compared with that in the model group (P<0.05, P<0.01). The mRNA expression of TGF-β1 and Smad3 was lower in the AAF group when compared with that in the AAK group (P<0.05).
CONCLUSION
Acupuncture at either "Feishu" (BL 13)+"Dingchuan" (EX-B 1) or "Kongzui" (LU 6)+"Yuji" (LU 10) reduces the airway remodeling in the rats with asthma, which may be related to the down-regulation of mRNA and protein expression of TGF-β1 and Smad3. The better efficacy is obtained with acupuncture at "Feishu" (BL 13)+"Dingchuan" (EX-B 1).
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta1/genetics*
;
Airway Remodeling
;
Acupuncture Therapy
;
Signal Transduction
;
Asthma/therapy*
;
Constriction, Pathologic
;
Anti-Asthmatic Agents
3.Role of TGF-β/Smad signaling pathway in diabetic kidney disease and research progress of traditional Chinese medicine intervention.
Yan-Xu CHEN ; Xiao-Xue JIANG ; Qin-Yuan ZHANG ; Chang-Qing XU ; Yao-Mu HU ; Cai-Yun JIN ; Bo-Ling ZHANG ; Yao-Qin FU ; Zhi-Sheng JIN
China Journal of Chinese Materia Medica 2023;48(10):2630-2638
Diabetic kidney disease is an important microvascular complication of diabetes and the leading cause of end-stage renal disease. Its pathological characteristics mainly include epithelial mesenchymal transition(EMT) in glomerulus, podocyte apoptosis and autophagy, and damage of glomerular filtration barrier. Transforming growth factor-β(TGF-β)/Smad signaling pathway is specifically regulated by a variety of mechanisms, and is a classic pathway involved in physiological activities such as apoptosis, proliferation and differentiation. At present, many studies have found that TGF-β/Smad signaling pathway plays a key role in the pathogenesis of diabetic kidney disease. Traditional Chinese medicine has significant advantages in the treatment of diabetic kidney disease for its multi-component, multi-target and multi-pathway characteristics, and some traditional Chinese medicine extracts, traditional Chinese medicines and traditional Chinese medicine compound prescription improve the renal injury of diabetic kidney disease by regulating TGF-β/Smad signaling pathway. This study clarified the mechanism of TGF-β/Smad signaling pathway in diabetic kidney disease by expounding the relationship between the key targets of the pathway and diabetic kidney disease, and summarized the research progress of traditional Chinese medicine in the treatment of diabetic kidney disease by interfering with TGF-β/Smad signaling pathway in recent years, to provide reference for drug research and clinical treatment of diabetic kidney disease in the future.
Humans
;
Diabetic Nephropathies/genetics*
;
Medicine, Chinese Traditional
;
Kidney/pathology*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Epithelial-Mesenchymal Transition
;
Smad Proteins/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Diabetes Mellitus/genetics*
4.Effect of Isodon ternifolius-medicated serum on hepatic stellate cells based on TLR4/NF-κB/NLRP3 signaling pathway.
Gui-Dong HUANG ; Zhi-Pin ZHOU ; Zhi PANG ; Le QIN ; Rui-Sheng WU ; Yong CHEN ; Xiao-Xue YE
China Journal of Chinese Materia Medica 2023;48(14):3913-3921
The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.
NF-kappa B/metabolism*
;
Hepatic Stellate Cells
;
Transforming Growth Factor beta1/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Intercellular Adhesion Molecule-1/metabolism*
;
Isodon
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Signal Transduction
;
Colchicine/pharmacology*
;
Caspases
5.1, 25-(OH)2-VitD3 attenuates renal tubulointerstitial fibrosis in diabetic kidney disease by inhibiting Snail1-SMAD3/SMAD4 complex formation.
Chengchong HUANG ; Rong DONG ; Zhengsheng LI ; Jing YUAN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):325-331
Objective To investigate the effect of 1, 25-(OH)2-VitD3 (VitD3) on renal tubuleinterstitial fibrosis in diabetic kidney disease. Methods NRK-52E renal tubular epithelial cells were divided into control group (5.5 mmol/L glucose medium treatment), high glucose group (25 mmol/L glucose medium treatment) and high glucose with added VitD3 group (25 mmol/L glucose medium combined with 10-8 mmol/L VitD3). The mRNA and protein expression of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in NRK-52E cells were detected by real-time quantitative PCR and Western blot analysis respectively. The expression and localization of Snail1, SMAD3 and SMAD4 were detected by immunofluorescence cytochemical staining. The binding of Snail1 with SMAD3/SMAD4 complex to the promoter of Coxsackie-adenovirus receptor (CAR) was detected by chromatin immunoprecipitation. The interaction among Snail1, SMAD3/SMAD4 and E-cadherin were detected by luciferase assay. Small interfering RNA (siRNA) was used to inhibit the expression of Snail1 and SMAD4, and the expression of mRNA of E-cadherin was detected by real-time quantitative PCR. SD rats were randomly divided into control group, DKD group and VitD3-treated group. DKD model was established by injection of streptozotocin (STZ) in DKD group and VitD3-treated group. After DKD modeling, VitD3-treated group was given VitD3 (60 ng/kg) intragastric administration. Control group and DKD group were given normal saline intragastric administration. In the DKD group and VitD3-treated group, insulin (1-2 U/kg) was injected subcutaneously to control blood glucose for 8 weeks. The mRNA and protein levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissues were detected by real-time quantitative PCR and Western blot analysis respectively. Immunohistochemistry was used to detect the expression and localization of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissue. Results Compared with the control group, the mRNA and protein expressions of Snail1, SMAD3, SMAD4 and α-SMA in NRK-52E cells cultured with high glucose and in DKD renal tissues were up-regulated, while E-cadherin expression was down-regulated. After the intervention of VitD3, the expression levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in the DKD model improved to be close to those in the control group. Chromatin immunoprecipitation showed that Snail1 and SMAD3/SMAD4 bound to CAR promoter IV, while VitD3 prevented Snail1 and SMAD3/SMAD4 from binding to CAR promoter IV. Luciferase assay confirmed the interaction among Snail1, SMAD3/SMAD4 and E-cadherin. After the mRNA of Snail1 and SMAD4 was inhibited by siRNA, the expression of E-cadherin induced by high glucose was up-regulated. Conclusion VitD3 could inhibit the formation of Snail1-SMAD3/SMAD4 complex and alleviate the renal tubulointerstitial fibrosis in DKD.
Animals
;
Rats
;
Cadherins/genetics*
;
Diabetes Mellitus/pathology*
;
Diabetic Nephropathies/pathology*
;
Epithelial-Mesenchymal Transition
;
Fibrosis/pathology*
;
Glucose/pharmacology*
;
Kidney/pathology*
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
RNA, Small Interfering
;
Transforming Growth Factor beta1/metabolism*
;
Vitamin D/pharmacology*
6.Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling.
Zhun XIAO ; Qiang JI ; Ya-Dong FU ; Si-Qi GAO ; Yong-Hong HU ; Wei LIU ; Gao-Feng CHEN ; Yong-Ping MU ; Jia-Mei CHEN ; Ping LIU
Chinese journal of integrative medicine 2023;29(4):316-324
OBJECTIVE:
To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.
METHODS:
Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.
RESULTS:
High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).
CONCLUSIONS
Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
Rats
;
Male
;
Mice
;
Animals
;
Transforming Growth Factor beta/metabolism*
;
Amygdalin/therapeutic use*
;
Endothelial Cells/metabolism*
;
Olive Oil/therapeutic use*
;
Rats, Wistar
;
Smad Proteins/metabolism*
;
Liver Cirrhosis/metabolism*
;
Liver
;
Transforming Growth Factor beta1/metabolism*
;
Signal Transduction
;
Collagen Type I/metabolism*
;
Carbon Tetrachloride
;
Hepatic Stellate Cells
7.Inhibitory Effect of Resveratrol on LPS-induced Glomerular Mesangial Cells Proliferation and TGF-β1 Expression via Sphingosine Kinase 1 Pathway.
Fu-Zhen FENG ; Wen-Yan GONG ; Si-Yun LI ; Yan-Hui DENG
Chinese journal of integrative medicine 2023;29(6):500-507
OBJECTIVE:
To elucidate the renoprotective effect of resveratrol (RSV) on sphingosine kinase 1 (SphK1) signaling pathway and expression of its downstream molecules including activator protein 1 (AP-1) and transformation growth factor-β1 (TGF-β1) in lipopolysaccharide (LPS)-induced glomerular mesangial cells (GMCs).
METHODS:
The rat GMCs line (HBZY-1) were cultured and randomly divided into 5 groups, including control, LPS (100 ng/mL), and 5, 10, 20 µmol/L RSV-treated groups. In addition, SphK1 inhibitor (SK-II) was used as positive control. GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h. GMCs proliferation was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The proteins expression of SphK1, p-c-Jun and TGF-β1 in GMCs were detected by Western blot, and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay (EMSA). The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016.
RESULTS:
LPS could obviously stimulate GMCs proliferation, elevate SphK1, p-c-Jun and TGF-β1 expression levels and increase the DNA-binding activity of AP-1 (P<0.05 or P<0.01), whereas these effects were significantly blocked by RSV pretreatment. It was also suggested that the effect of RSV was similar to SK-II (P>0.05). Moreover, RSV exhibited good binding affinity towards SphK1, with docking scores of -8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1.
CONCLUSION
RSV inhibited LPS-induced GMCs proliferation and TGF-β1 expression, which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.
Animals
;
Rats
;
Lipopolysaccharides/pharmacology*
;
Mesangial Cells
;
Resveratrol/pharmacology*
;
Transcription Factor AP-1
;
Transforming Growth Factor beta1
;
Intercellular Signaling Peptides and Proteins
;
Cell Proliferation
;
DNA
;
Cells, Cultured
8.Effect of mycophenolate mofetil alleviates carbon tetrachloride-induced liver fibrosis in mice.
Peng DING ; Pengpeng ZHANG ; Hao LI ; Yingzi MING
Journal of Central South University(Medical Sciences) 2023;48(6):821-828
OBJECTIVES:
Hepatic fibrosis is a serious pathological consequence of chronic liver disease. Mycophenolate mofetil (MMF) is a commonly used immunosuppressant after organ transplant. However, the relationship between MMF and hepatic fibrosis remains unclear. This study aims to explore the effect of MMF on hepatic fibrosis in mice and the potential mechanism.
METHODS:
A total of 24 mice (male, 8-week old, C57BL/6) were randomly divided into a control group, a MMF group, a carbon tetrachloride (CCl4) group and a CCl4+MMF group (n=6 in each group). After the mice were sacrificed, the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected. The liver tissues were taken up for Masson staining and collagen I (COL1) immunohistochemistry. The levels of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were detected by Western blotting. Finally, the levels of mRNA for TGF-β1, α-SMA, and COL1 were detected using real-time PCR.
RESULTS:
Compared with the CCl4 group, the ALT and AST levels were lower (both P<0.05), the degree of liver fibrosis was alleviated, and the deposition of COL1 in the liver was significantly decreased (P<0.01) in the CCl4+MMF group. Compared with the CCl4 group, the protein expression levels of TGF-β1 and α-SMA were significantly decreased (both P<0.05) and the relative expression levels of TGF-β1, α-SMA and COL1 mRNA in the liver were significantly decreased (all P<0.05) in the CCl4+MMF.
CONCLUSIONS
MMF could reduce CCl4-induced hepatic fibrosis, which might be related to the inhibition of TGF-β1. This study is expected to provide a target for the treatment of hepatic fibrosis.
Male
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Mycophenolic Acid/therapeutic use*
;
Carbon Tetrachloride/toxicity*
;
Transforming Growth Factor beta1/genetics*
;
Liver Cirrhosis/drug therapy*
;
RNA, Messenger
9.LRG1 inhibits hepatic macrophage activation by enhancing TGF-β1 signaling to alleviate MAFLD in mice.
Longfei XU ; Jing HAN ; Zhe YANG ; Yanping YANG ; Jinhui CHEN ; Xijun WU ; Qi WANG ; Yan HONG
Journal of Southern Medical University 2023;43(7):1164-1171
OBJECTIVE:
To explore the effect of leucine-rich α-2-glycoprotein (LRG1) derived from hepatocytes on activation of hepatic M1 Kupffer cells.
METHODS:
A metabolic dysfunction-associated fatty liver disease (MAFLD) model was established in BALB/c mice by high-fat diet (HFD) feeding for 16 weeks. Oleic acid was used to induce steatosis in primary cultures of mouse hepatocytes. The mRNA and protein expressions of LRG1 in mouse liver tissues and hepatocytes were detected by real-time PCR and Western blotting. Primary hepatic macrophages were stimulated with the conditioned medium (CM) from steatotic hepatocyte along with LRG1 or transforming growth factor-β1 (TGF-β1), or both for 24 h, and the expression levels of inducible nitric oxide synthase (iNOS) was detected with Western botting, and the mRNA expressions of iNOS, chemokine ligand 1 (CXCL-1) and interleukin-1β (IL-1β) were measured by RT-PCR. The MAFLD mice were injected with LRG1 (n=6), TGF-β1 (n=6), or both (n=6) through the caudal vein, and the live tissues were collected for HE staining and immumohistochemical detection of F4/80 expression; the mRNA expressions of iNOS, CXCL-1 and IL-1β in liver tissues were detected using RT-PCR.
RESULTS:
The mRNA and protein expression levels of LRG1 were significantly downregulated in the liver tissues of MAFLD mice and steatotic hepatocytes (P < 0.05). Treatment of the hepatic macrophages with CM from steatosis hepatocytes significantly enhanced the mRNA expression levels of iNOS, CXCL-1 and IL-1β, and these changes were significantly inhibited by the combined treatment with TGF-β1 and LRG1 (P < 0.05). In MAFLD mice, injections with either LRG1 or TGF-β1 alone reduced hepatic lipid deposition and intrahepatic macrophage infiltration, and these effects were significantly enhanced by their combined treatment, which also more strongly inhibited the mRNA expression levels of iNOS, CXCL-1 and IL-1β (P < 0.05).
CONCLUSION
LRG1 inhibits hepatic macrophage infiltration by enhancing TGF-β1 signaling to alleviate fatty liver inflammation in MAFLD mice.
Animals
;
Mice
;
Transforming Growth Factor beta1
;
Macrophage Activation
;
Signal Transduction
;
Non-alcoholic Fatty Liver Disease
;
Culture Media, Conditioned
;
Glycoproteins
10.Shenmai Injection Improves Hypertensive Heart Failure by Inhibiting Myocardial Fibrosis via TGF-β 1/Smad Pathway Regulation.
Si-Yuan HU ; Yao ZHOU ; Sen-Jie ZHONG ; Meng YANG ; Shu-Min HUANG ; Lin LI ; Xin-Chun LI ; Zhi-Xi HU
Chinese journal of integrative medicine 2023;29(2):119-126
OBJECTIVE:
To study effects of Shenmai Injection on hypertensive heart failure and its mechanism for inhibiting myocardial fibrosis.
METHODS:
Salt-sensitive (Dahl/SS) rats were fed with normal diet (0.3% NaCl) and the high-salt diet (8% NaCl) to observe the changes in blood pressure and heart function, as the control group and the model group. Salt-insensitive rats (SS-13BN) were fed with the high-salt diet (8% NaCl) as the negative control group. After modeling, the model rats were randomly divided into heart failure (HF) group, Shenmai Injection (SMI) group and pirfenidone (PFD) group by a random number table, with 6 rats in each group. They were given sterilized water, SMI and pirfenidone, respectively. Blood pressure, cardiac function, fibrosis and related molecular expression were detected by sphygmomanometer, echocardiogram, enzyme linked immunosorbent assay (ELISA), hematoxylin-eosin staining, Masson staining, immunofluorescence and qPCR analysis.
RESULTS:
After high-salt feeding, compared with the control and negative control group, in the model group the blood pressure increased significantly, the left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) were significantly reduced, and the serum NT-proBNP concentration increased significantly (all P<0.05); furthermore, the arrangement of myocardial cells was disordered, the edema was severe, and the degree of myocardial fibrosis was also significantly increased (P<0.05); the protein and mRNA expressions of collagen type I (Col I) were up-regulated (P<0.05), and the mRNA expressions of transforming growth factor β 1 (TGF- β 1), Smad2 and Smad3 were significantly up-regulated (P<0.05). Compared with HF group, after intervention of Shenmai Injection, LVEF and LVFS increased, myocardial morphology was improved, collagen volume fraction decreased significantly (P<0.05), and the mRNA expressions of Col I, TGF- β 1, Smad2 and Smad3, as well as Col I protein expression, were all significantly down-regulated (all P<0.05).
CONCLUSION
Myocardial fibrosis is the main pathological manifestation of hypertensive heart failure, and Shenmai Injection could inhibit myocardial fibrosis and effectively improve heart failure by regulating TGF-β 1/Smad signaling pathway.
Rats
;
Animals
;
Stroke Volume
;
Sodium Chloride
;
Rats, Inbred Dahl
;
Ventricular Function, Left
;
Heart Failure
;
Transforming Growth Factor beta1/metabolism*
;
Hypertension
;
Fibrosis
;
RNA, Messenger

Result Analysis
Print
Save
E-mail