1.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
2.Inducible co-stimulatory molecules participate in mesenteric vascular endothelial-mesenchymal transition and sclerosis of mesenteric vessels in spontaneously hypertensive rats.
Chang Le DU ; Yu WANG ; Ji Feng FU ; Dong Li CAO ; Ren Biao MEI ; Qi ZHANG
Journal of Southern Medical University 2023;43(2):308-316
OBJECTIVE:
To investigate the correlation of inducible co-stimulatory molecules (ICOS) with mesenteric vascular endothelial- mesenchymal transition (EndMT) and sclerosis in spontaneously hypertensive rats (SHR).
METHODS:
Twenty 4-week-old WKY rats and 20 SHRs of the same strain were both randomly divided into 4 groups for observation at 4, 6, 10 and 30 weeks of age. ICOS expression frequency in rat spleen CD4+T cells was analyzed using flow cytometry, and the expressions of ICOS, VE-cad, α-SMA and Col3 mRNA in rat mesentery were detected by RT-PCR. The distributions of ICOS, IL-17A and TGF-β in rat mesentery were detected by immunohistochemistry. The levels of IL-17A and TGF-β in rat plasma were measured using ELISA. The morphological changes of rat mesenteric vessels were observed with Masson staining. Spearman or Pearson correlation analyses were used to evaluate the correlation between ICOS expression and the expressions of the markers of vascular EndMT and sclerosis.
RESULTS:
Compared with the control WKY rats, the SHRs began to show significantly increased systolic blood pressure and ICOS expression frequency on CD4+T cells at 6 weeks of age (P < 0.05). In the SHRs, the mRNA and protein expressions of ICOS, α-SMA, Col3, IL-17A and TGF-β in the mesentery were significantly higher than those in control group (P < 0.05), while the mRNA and protein expressions of VE-cad started to reduce significantly at 10 weeks of age (P < 0.05). The plasma levels of IL-17A and TGF-β were significantly increased in SHRs since 6 weeks of age (P < 0.05) with progressive worsening of mesenteric vascular sclerosis (P < 0.05). ICOS mRNA and protein expression levels in the mesenteric tissues of SHRs began to show positive correlations with α-SMA and Col3 expression levels and the severity of vascular sclerosis at 6 weeks of age (P < 0.05) and a negative correlation with VE-cad expression level at 10 weeks (P < 0.05).
CONCLUSION
ICOS play an important pathogenic role in EndMT and sclerosis of mesenteric vessels in essential hypertension by mediating related immune responses.
Rats
;
Animals
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Hypertension
;
Interleukin-17
;
Sclerosis/pathology*
;
Transforming Growth Factor beta
;
Mesentery/pathology*
;
RNA, Messenger/metabolism*
;
Blood Pressure
3.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
4.Huangqi Decoction, a compound Chinese herbal medicine, inhibits the proliferation and activation of hepatic stellate cells by regulating the long noncoding RNA-C18orf26-1/microRNA-663a/transforming growth factor-β axis.
Ben-Sheng DONG ; Fu-Qun LIU ; Wen-Na YANG ; Xiao-Dong LI ; Miao-Juan SHI ; Mao-Rong LI ; Xiu-Li YAN ; Hui ZHANG
Journal of Integrative Medicine 2023;21(1):47-61
OBJECTIVE:
Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis.
METHODS:
The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting.
RESULTS:
Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment.
CONCLUSION
Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.
Humans
;
Transforming Growth Factor beta/pharmacology*
;
Transforming Growth Factor beta1/metabolism*
;
RNA, Long Noncoding/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
MicroRNAs/genetics*
;
Hepatic Stellate Cells/pathology*
;
Liver Cirrhosis/metabolism*
;
Cell Proliferation
;
Transforming Growth Factors/pharmacology*
5.Treg Cells, FoxP3 and TGF-β Expression and Significance in Chronic Myeloid Leukemia.
Shu-Li WANG ; Qiao-Feng DONG ; Fang LI ; Jing WANG ; Yu-Qi SANG ; Lin ZHANG
Journal of Experimental Hematology 2023;31(3):666-670
OBJECTIVE:
To investigate the expression and significance of regulatory T cells (Tregs), FoxP3 and transforming growth factor-β (TGF-β) in different phase of chronic myeloid leukemia (CML).
METHODS:
Peripheral blood of 73 CML patients in Department of Hematology, Heze Municipal Hospital from March 2018 to March 2021 were collected. According to patient's period in CML, they were divided into ND CML group (newly diagnosed), CP CML group (chronic period), and BP CML group (blast phase). The percentage of Tregs, expression level of FoxP3 mRNA and TGF-β were detected by flow cytometry, RT-qPCR, and ELISA, respecitively. The roles of above indices in clinical pathogenesis of patients with CML were analyzed.
RESULTS:
The proportion of Treg in the ND CML group was slightly higher than the CP CML group, but the difference was not statistically significant (P =0.695), while the BP CML group was significantly higher than the other two groups (P =0.008, P <0.001). The expression levels of FoxP3 mRNA in ND CML group, CP CML group and BP CML group were 11.61±2.21, 6.46±1.35 and 8.54±2.13, respectively. Significant difference in FoxP3 mRNA levels was observed among patients in different phases of CML (F =55.199, P <0.001). The expression levels of FoxP3 mRNA both in ND CML group and BP CML group were significantly higher than that in CP CML group (P <0.001), and the ND CML group was the highest (P <0.001). However, the expression levels of TGF-β in different phases of CML showed no statistical differences (H =0.634, P =0.728).
CONCLUSION
The abnormal distribution of Treg subset in different phases of CML and the significant increase of the expression level of FoxP3 mRNA in the new onset and blast phase of CML suggest that Tregs may promote the occurrence and progression of CML through immune regulation.
Humans
;
Blast Crisis/metabolism*
;
Forkhead Transcription Factors/metabolism*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*
;
RNA, Messenger/metabolism*
;
T-Lymphocytes, Regulatory/metabolism*
;
Transforming Growth Factor beta/metabolism*
6.Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling.
Zhun XIAO ; Qiang JI ; Ya-Dong FU ; Si-Qi GAO ; Yong-Hong HU ; Wei LIU ; Gao-Feng CHEN ; Yong-Ping MU ; Jia-Mei CHEN ; Ping LIU
Chinese journal of integrative medicine 2023;29(4):316-324
OBJECTIVE:
To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.
METHODS:
Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.
RESULTS:
High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).
CONCLUSIONS
Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
Rats
;
Male
;
Mice
;
Animals
;
Transforming Growth Factor beta/metabolism*
;
Amygdalin/therapeutic use*
;
Endothelial Cells/metabolism*
;
Olive Oil/therapeutic use*
;
Rats, Wistar
;
Smad Proteins/metabolism*
;
Liver Cirrhosis/metabolism*
;
Liver
;
Transforming Growth Factor beta1/metabolism*
;
Signal Transduction
;
Collagen Type I/metabolism*
;
Carbon Tetrachloride
;
Hepatic Stellate Cells
7.Neotuberostemonine and tuberostemonine ameliorate pulmonary fibrosis through suppressing TGF-β and SDF-1 secreted by macrophages and fibroblasts via the PI3K-dependent AKT and ERK pathways.
San FU ; Xianrui SONG ; Yingying HU ; Qingwei ZHU ; Xinmiao LV ; Xiaoyan TANG ; Mian ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):527-539
Activated fibroblasts and M2-polarized macrophages may contribute to the progression of pulmonary fibrosis by forming a positive feedback loop. This study was aimed to investigate whether fibroblasts and macrophages form this loop by secreting SDF-1 and TGF-β and the impacts of neotuberostemonine (NTS) and tuberostemonine (TS). Mice were intratracheally injected with 3 U·kg-1 bleomycin and orally administered with 30 mg·kg-1 NTS or TS. Primary pulmonary fibroblasts (PFBs) and MH-S cells (alveolar macrophages) were used in vitro. The animal experiments showed that NTS and TS improved fibrosis related indicators, inhibited fibroblast activation and macrophage M2 polarization, and reduced the levels of TGF-β and SDF-1 in alveolar lavage fluid. Cell experiments showed that TGF-β1 may activated fibroblasts into myofibroblasts secreting SDF-1 by activating the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways. It was also found for the first time that SDF-1 was able to directly polarize macrophages into M2 phenotype secreting TGF-β through the same pathways as mentioned above. Moreover, the results of the cell coculture confirmed that fibroblasts and macrophages actually developed a feedback loop to promote fibrosis, and the secretion of TGF-β and SDF-1 was crucial for maintaining this loop. NTS and TS may disturb this loop through inhibiting both the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways to improve pulmonary fibrosis. NTS and TS are stereoisomeric alkaloids with pyrrole[1,2-a]azapine skeleton, and their effect on improving pulmonary fibrosis may be largely attributed to their parent nucleus. Moreover, this study found that inhibition of both the AKT and ERK pathways is essential for maximizing the improvement of pulmonary fibrosis.
Animals
;
Mice
;
Pulmonary Fibrosis/metabolism*
;
Transforming Growth Factor beta/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
MAP Kinase Signaling System
;
Alkaloids/pharmacology*
;
Fibroblasts
;
Macrophages/metabolism*
8.Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell.
Longpeng MA ; Xiangqian LUO ; Lihua MO ; Jialiang FAN ; Dabo LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(4):272-277
Objective:To prepare PLGA nanoparticles loaded with Der f 1/IGF-1(Der f 1/IGF-1 NPs) and investigate their role in promoting the formation of Treg cells. Methods:NPs coated with Der f 1/IGF-1 were prepared by double emulsion method and their physicochemical properties and cumulative release rate in vitro were analyzed. After pretreatment, BMDC was divided into Saline group, Blank NPs group, Der f 1/IGF-1 group and Der f 1/IGF-1 NPs group. Determination of the expression of IL-10 and TGF-β in BMDC by ELISA. The number of Treg cells was detected by flow cytometry. Results:The results showed that Der f 1/IGF-1 NPs were spherical structures, with good dispersion, particle size less than 200 nm, negative charge and stable slow-release effect of Zeta potential. After BMDC pretreatment, the expression levels of TGF-β and IL-10 in BMDC cells in the Der f 1/IGF-1 NPs group were significantly increased compared with the Blank NPs group, and the difference was statistically significant(P<0.001). After co-culture with CD4+ T cells, the proportion of Treg cells produced in the Der f 1/IGF-1 NPs group was significantly increased, and the difference was statistically significant(P<0.001). Conclusion:Der f 1/IGF-1 NPs can induce Treg cell generation in vitro. This study provides a new and more effective method for the reconstruction of immune tolerance dysfunction.
Humans
;
T-Lymphocytes, Regulatory/metabolism*
;
Interleukin-10/metabolism*
;
Insulin-Like Growth Factor I
;
Transforming Growth Factor beta
;
Nanoparticles/chemistry*
;
Particle Size
;
Drug Carriers/chemistry*
9.Regulation of colony-stimulating factor 1 receptor inhibitor pexidartinib on the senescence of mouse bone marrow-derived macrophages stimulated by lipopolysaccharide.
Tian Jiao XIAO ; Jie ZHANG ; Jia Bing KANG ; Li LI ; Ji Fan ZHAN ; Yan WEI ; Ai TIAN
Chinese Journal of Stomatology 2023;58(6):575-583
Objective: To investigate the effects of colony-stimulating factor 1 receptor (CSF-1R) inhibitor pexidartinib (PLX3397) on the senescence of bone marrow-derived macrophages (BMDM) stimulated by lipopolysaccharide (LPS). Methods: BMDM were isolated and cultured from femurs and tibiae of 10 male C57BL/6 mice aged 6-8 weeks (obtained from Laboratory Animal Center of Guizhou Medical University). They were divided into blank control group, LPS group (treated with 1 μg/ml LPS for 24 h) as well as low, medium and high concentration PLX3397 pretreatment groups (treated with 100, 500 and 1 000 nmol/L PLX3397 for 4 h respectively followed by 1 μg/ml LPS for 24 h). The corresponding markers of macrophages were detected by flow cytometry. Cell viability was detected by cell counting kit-8 and cellular senescence was detected by senescence-associated-β-galactosidase (SA-β-gal) staining. Meanwhile, protein expressions of cycle-dependent kinase inhibitor p16, p21 and CSF-1R were detected by Western blotting, and the expressions of p16 and p21 were detected by intracellular immunofluorescence. Real-time fluorescence quantitative PCR (RT-qPCR) was used to investigate the mRNA levels of senescence-associated secretory phenotype (SASP) genes including interleukin (IL), IL-1β, chemokine-1/10 (CXCL-1/10), matrix metalloproteinase-8 (MMP-8), and transforming growth factor-β (TGF-β). Results: The rate of SA-β-gal positive staining in medium and high concentration PLX3397 pretreatment groups [(39.33±4.93)% and (36.33±3.06)% respectively] were significantly downregulated compared with LPS group [(52.00±3.00)%] (P=0.020, P=0.005). The expression of CSF-1R protein in low, medium and high concentration PLX3397 pretreatment groups were (0.74±0.18, 0.61±0.07, 0.54±0.06), all of which were significantly lower than that in LPS group (1.16±0.08) (P=0.013, P=0.002, P<0.001). The expression levels of CSF-1R mRNA in low, medium and high concentration PLX3397 pretreatment groups (1.04±0.06, 0.90±0.05, 1.18±0.08) showed similar trend (2.90±0.25) (P<0.001). The average fluorescence intensity of p16 in all PLX3397 pretreatment groups were 49.76±3.65, 48.21±1.72, 47.99±1.26 respectively, which were significantly lower than that in LPS group (66.88±5.85) (P=0.001, P<0.001, P<0.001). The average fluorescence intensity of p21 in medium and high concentration PLX3397 pretreatment groups were (34.43±3.62, 30.13±0.86), significantly lower than that in LPS group (46.82±5.33) (P=0.043, P=0.007). The expression of p16 protein in low, medium and high concentration PLX3397 pretreatment groups (0.56±0.04, 0.55±0.04, 0.35±0.19) were significantly lower than that in LPS group (0.98±0.10) (P=0.003, P=0.002, P<0.001), as well the expression of p21 protein (0.69±0.20, 0.42±0.08, 0.26±0.14) (P=0.032, P=0.002, P<0.001). According to the results of RT-qPCR, the expressions of IL-6, IL-1β, CXCL-1, CXCL-10 and MMP-8 in PLX3397 pretreatment groups were significantly lower than those in LPS group (P<0.001), while the expression of TGF-β increased (P<0.001). Conclusions: LPS could induce the cell senescence, increase the secretion of SASP and aggravate local inflammation by activating the CSF-1R on the cell surface of bone marrow-derived macrophages. CSF-1R inhibitor PLX3397 might attenuate CSF-1R activation associated with LPS and inhibit the senescence of bone marrow-derived macrophages induced by LPS.
Mice
;
Animals
;
Male
;
Lipopolysaccharides/pharmacology*
;
Macrophage Colony-Stimulating Factor/metabolism*
;
Matrix Metalloproteinase 8/metabolism*
;
Mice, Inbred C57BL
;
Macrophages
;
Transforming Growth Factor beta/metabolism*
;
RNA, Messenger/metabolism*
10.Formononetin enhances the antitumor effect of H22 hepatoma transplanted mice.
Mi LI ; Chengzhi JIANG ; Jianting CHEN ; Junyan WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1063-1068
Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-β in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.
Male
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/genetics*
;
Interleukin-10/genetics*
;
B7-H1 Antigen
;
Granzymes/genetics*
;
Programmed Cell Death 1 Receptor/metabolism*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Mice, Inbred C57BL
;
Transforming Growth Factor beta/genetics*
;
RNA, Messenger/metabolism*
;
Forkhead Transcription Factors/genetics*
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail