1.Astragaloside IV regulates Snail1 lactylation and acetylation to mediate macrophage polarization and improve myocardial infarction.
Shaopeng CHEN ; Rudian KANG ; Xinbao HONG ; Yilong LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):289-299
Objective To investigate the impact of Astragaloside-IV (AS-IV) on the progression of myocardial infarction (MI) through macrophage-dependent mechanisms by regulating Snail1 lactylation and acetylation, as well as the transforming growth factor β (TGF-β) pathway. Methods Oxygen glucose deprivation (OGD) was used to establish an in vitro myocardial ischemia model in rat cardiomyocytes (H9c2), which were then treated with AS-IV. Cell viability was assessed using CCK-8, apoptosis was evaluated by flow cytometry, and LDH levels were measured to assess cellular damage. RAW246.7 cells were treated with LPS, and lactate levels in the supernatant were measured using ELISA, while expression of macrophage phenotype markers was evaluated using Western blot. RAW246.7 cell-conditioned medium (CM) was co-cultured with H9c2 cells to assess the protective effects of AS-IV on macrophage CM-mediated H9c2 damage. RAW246.7 cells were induced to differentiate into M1-like macrophages using LPS (100 ng/mL) + IFN-γ (20 ng/mL), and Snail1 was overexpressed in M1 macrophages. Transfected M1 macrophage CM was co-cultured with H9c2 cells to validate the mechanisms of AS-IV in MI. An MI rat model was established by ligation of the left anterior descending coronary artery (LAD), and was treated with AS-IV. Cardiac function, myocardial cell apoptosis, and cardiac tissue pathology were studied using echocardiography, TUNEL, and HE staining, respectively. Results Compared to the OGD group, AS-IV treatment promoted cell viability, reduced apoptosis and decreased LDH release. LPS upregulated lactate levels in the supernatant of RAW246.7 cell cultures and induced polarization of RAW246.7 cells to the M1 phenotype. AS-IV attenuated the damaging effects of RAW246.7 cell CM on H9c2 cells . Overexpression of Snail1 in M1 macrophages weakened the protective effects of AS-IV on H9c2 cells . In vivo study, results showed that, compared to the MI group, AS-IV treatment reduced lactate levels in the hearts of MI rats, improved cardiac function and myocardial injury and attenuated myocardial cell apoptosis. Conclusion AS-IV inhibits TGF-β pathway activation through the suppression of Snail1 lactylation and acetylation in a macrophage-dependent manner, thereby mitigating myocardial cell damage following MI.
Animals
;
Myocardial Infarction/drug therapy*
;
Rats
;
Snail Family Transcription Factors/metabolism*
;
Macrophages/cytology*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/pharmacology*
;
Saponins/pharmacology*
;
Acetylation/drug effects*
;
Apoptosis/drug effects*
;
Mice
;
Cell Line
;
RAW 264.7 Cells
;
Transforming Growth Factor beta/metabolism*
2.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
3.Ginsenoside Rb3 regulates the phosphorrylated extracellular signal-regulated kinase signaling pathway to alleviate inflammatory responses and promote osteogenesis in rats with periodontitis.
Xueying ZHANG ; Xin MENG ; Zhizhen LIU ; Kang ZHANG ; Honghai JI ; Minmin SUN
West China Journal of Stomatology 2025;43(2):236-248
OBJECTIVES:
To explore the promoting effect of ginsenoside Rb3 (Rb3) on osteogenesis in periodontitis environment, and to explain its mechanism.
METHODS:
Human periodontal ligament stem cells (hPDLSCs) were cultured by tissue block method and identified by flow cytometry. Cell counting kit-8 (CCK8) method and calcein acetoxymethyl ester/propidium iodide staining were used to detect the effect of Rb3 on the viability of hPDLSCs cells. In vitro cell experiments were divided into control group, 10 μg/mL lipopolysaccharides (LPS) group, 10 μg/mL LPS+100 μmol/L Rb3 group and 10 μg/mL LPS+200 μmol/L Rb3 group. Alkaline phosphatase (ALP) staining was used to detect the ALP activity of hPDLSCs in each group after osteogenesis induction. The expression of hPDLSCs interleukin-6 (IL-6), interleukin-8 (IL-8), runt-related transcription factor 2 (RUNX2) and transforming growth factor-β (TGF-β)genes in each group after osteogenesis was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Western blot was used to detect the protein expression of hPDLSCs phosphorrylated extracellular signal-regulated kinase (p-ERK) in each group. Sprague-Dawley rats were randomly divided into the control group, ligation group and ligation+Rb3 group. The left molar-maxillary tissue was subjected to micro-computed tomography (micro-CT) scanning. After the scanning, the left molar-maxilla was made into periodontal tissue sections. Hematoxylin-eosin (HE) staining was used to detect the infiltration and loss of adhesion of inflammatory cells. Masson staining was used to detect the destruction of gingival collagen fibers. Immunofluorescence staining was used to detect the protein expression of RUNX2 and p-ERK. The expression of TGF-β in rat gingival tissue was detected by qRT-PCR. The protein expression of IL-6 in peripheral serum of rats was detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect the proportion of Treg cells in rat heart blood. The experimental data were statistically analyzed by Graph Pad Prism10.1.2 software.
RESULTS:
Rb3 had no effect on the cell activity of hPDLSCs. The results of qRT-PCR and ALP staining showed that Rb3 could inhibit the gene expression of IL-6 and IL-8 in inflammatory hPDLSCs, promote TGF-β gene and promote the osteogenic differentiation of inflammatory hPDLSCs. Western blot showed that Rb3 inhibited the protein expression of inflammatory hPDLSCs p-ERK. The results from micro-CT, Masson staining, and HE staining demonstrated that Rb3 promotes alveolar bone formation in rats with periodontitis, while simultaneously inhibiting the destruction of periodontal fibrous tissue, reducing attachment loss, and suppressing inflammatory cell infiltration. The results of flow cytometry showed that Rb3 could promote the differentiation of Treg cells in peripheral blood of periodontitis rats. The results of ELISA and qRT-PCR showed that Rb3 could inhibit the protein expression of IL-6 and promote the gene expression of TGF-β in periodontitis rats. Immunofluorescence results showed that Rb3 could promote the protein expression of RUNX2 and inhibit the protein expression of p-ERK in periodontitis rats.
CONCLUSIONS
Rb3 can reduce the inflammatory reaction of periodontal tissues in periodontitis rats, and promote the osteogenic differentiation of hPDLSCs by regulating p-ERK pathways.
Animals
;
Ginsenosides/pharmacology*
;
Osteogenesis/drug effects*
;
Periodontitis/metabolism*
;
Rats
;
Periodontal Ligament/cytology*
;
Humans
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Stem Cells/drug effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Interleukin-8/metabolism*
;
Cells, Cultured
;
MAP Kinase Signaling System/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Male
;
Phosphorylation
;
Lipopolysaccharides
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Alkaline Phosphatase/metabolism*
4.Mechanism of Tanyu Tongzhi Formula in treatment of atherosclerosis by maintaining vascular homeostasis based on TGF-β signaling pathway.
Xiao-Shan CUI ; Hui-Yu ZHANG ; Yuan-Yuan CHEN ; Liang LI ; Jia-Ming GAO ; Wei HAO ; Cheng-Zhi XIE ; Jian-Xun LIU ; Jian-Hua FU ; Hao GUO
China Journal of Chinese Materia Medica 2024;49(23):6429-6438
This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.2 mg·kg~(-1)), a Huatan(phlegm-resolving) group(10.4 mg·kg~(-1)), and a Quyu(blood stasis-resolving) group(7.8 mg·kg~(-1)), with 8 mice in each group. Except for the normal group, all other groups continued to be fed a high-fat diet for 8 weeks to maintain the AS model, and then the mice were treated by gavage for 8 weeks. Plasma levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), interleukin-1β(IL-1β), and interleukin-18(IL-18) were measured using enzyme-linked immunosorbent assay(ELISA). Hematoxylin and eosin(HE) staining, oil red O staining, and Russell-Movat pentachrome staining were performed to observe the pathological changes in the aortic tissue. The proportions of aortic plaque area, lipid-stained area, collagen fibers, and elastic fibers were calculated. Immunofluorescence was used to detect the protein expression levels of matrix metalloproteinase 2(MMP2) and tissue inhibitor of metalloproteinases 2(TIMP2). Western blot was used to detect the protein expression levels of TGF-β1, TGF-β2, Smad2/3, and Smad7 in aortic tissue. Real-time fluorescence quantitative PCR(RT-qPCR) was used to measure the mRNA expression levels of TGF-β receptor(TGF-βR), TGF-β1, Smad2/3, Smad7, intercellular adhesion molecule-1(ICAM-1), and vascular cell adhesion molecule-1(VCAM-1) in aortic tissue. The results showed that compared with the normal control group, the model group had increased plasma TC and LDL-C, significantly decreased HDL-C, and significantly elevated plasma IL-1β and IL-18 levels. The model group also exhibited an increased proportion of aortic plaque area, lipid-stained area, and collagen fiber area, along with significantly upregulated MMP2 and downregulated TIMP2 expression in the aortic arch. Additionally, the expression levels of TGF-βR, TGF-β1, and p-Smad2/3 proteins and mRNA in the aortic tissue were significantly elevated, while Smad7 expression was decreased. Compared with the model group, the Tanyu Tongzhi group showed significantly reduced plasma TC and LDL-C levels, significantly increased HDL-C levels, and significantly decreased plasma IL-1β and IL-18 levels. The Tanyu Tongzhi group also exhibited a significant reduction in aortic plaque size and severity, a significant downregulation of MMP2 expression in the aortic arch, and significantly decreased ICAM-1 and VCAM-1 mRNA expression levels. Moreover, the Tanyu Tongzhi group demonstrated significantly reduced expression levels of TGF-β1 and p-Smad2/3 proteins and mRNA in the aortic tissue, and an increased expression level of Smad7 protein to varying degrees. Compared with the Tanyu Tongzhi group, the Quyu group had significantly higher LDL-C levels and elevated plasma IL-1β and IL-18 levels. The Huatan group showed upregulated MMP2 expression and downregulated TIMP2 expression in the aortic arch. In conclusion, Tanyu Tongzhi Formula, which is composed based on the pathogenesis of phlegm and blood stasis, maintains vascular homeostasis by primarily regulating lipid metabolism and controlling inflammatory factors through the Huatan group, and maintaining vascular wall permeability, inhibiting plaque development, and stabilizing plaques through the Quyu group. The mechanism of action may involve inhibiting TGF-β1 expression in the aorta, reducing Smad2/3 phosphorylation, and simultaneously increasing Smad7 expression.
Animals
;
Atherosclerosis/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Transforming Growth Factor beta/genetics*
;
Humans
;
Homeostasis/drug effects*
;
Aorta/metabolism*
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
5.Danshen Injection inhibits peritoneal dialysis fluid-induced endothelial-mesenchymal transition in HMrSV5 cells by regulating the TGF-β/Smad signaling pathway.
Lihua YU ; Jingya LI ; Xiaoqi WANG ; Li LI ; Ya CHEN ; Feiyu WANG ; Kun ZHANG ; Tongsheng WANG
Journal of Southern Medical University 2024;44(12):2276-2282
OBJECTIVES:
To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.
METHODS:
HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.1% and 0.5% Danshen Injection. CCK-8 assay was used to assess the changes in viability of the treated cells, and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and vascular endothelial growth factor (VEGF) in the cell supernatant were detected using ELISA; Western blotting was performed to detect the protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), p-Smad 2/3, and Smad 7 in the cells.
RESULTS:
Culture in 40% peritoneal dialysis fluid for 72 induced significant EndMT in HMrSV5 cells, which exhibited obviously lowered cell viability. Danshen Injection within the concentration range of 0.025%-1.5% did not significantly affect the viability of the cells. Exposure of HMrSV5 cells to peritoneal dialysis fluid for 72 h significantly increased the production of IL-6, TNF‑α, TGF‑β and VEGF, upregulated the protein expressions of α‑SMA and p-Smad 2/3, and lowered the expressions of E-cadherin and Smad7 proteins. Treatment of the exposed cells with Danshen injection significantly increased cell viability and cellular expressions of E-cadherin and Smad 7 proteins and reduced the production of IL-6, TNF-α, TGF-β and VEGF and the protein expressions of α‑SMA and p-Smad 2/3.
CONCLUSIONS
Danshen Injection can suppress peritoneal dialysis fluid-induced EndMT in HMrSV5 cells possibly by regulating the TGF-β/Smad signaling pathway.
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Transforming Growth Factor beta/metabolism*
;
Humans
;
Peritoneal Dialysis/adverse effects*
;
Salvia miltiorrhiza
;
Epithelial-Mesenchymal Transition/drug effects*
;
Smad Proteins/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Cadherins/metabolism*
;
Actins/metabolism*
;
Dialysis Solutions
;
Endothelial-Mesenchymal Transition
6.The novel anthraquinone compound Kanglexin prevents endothelial-to-mesenchymal transition in atherosclerosis by activating FGFR1 and suppressing integrin β1/TGFβ signaling.
Yixiu ZHAO ; Zhiqi WANG ; Jing REN ; Huan CHEN ; Jia ZHU ; Yue ZHANG ; Jiangfei ZHENG ; Shifeng CAO ; Yanxi LI ; Xue LIU ; Na AN ; Tao BAN ; Baofeng YANG ; Yan ZHANG
Frontiers of Medicine 2024;18(6):1068-1086
Endothelial-mesenchymal transition (EndMT) disrupts vascular endothelial integrity and induces atherosclerosis. Active integrin β1 plays a pivotal role in promoting EndMT by facilitating TGFβ/Smad signaling in endothelial cells. Here, we report a novel anthraquinone compound, Kanglexin (KLX), which prevented EndMT and atherosclerosis by activating MAP4K4 and suppressing integrin β1/TGFβ signaling. First, KLX effectively counteracted the EndMT phenotype and mitigated the dysregulation of endothelial and mesenchymal markers induced by TGFβ1. Second, KLX suppressed TGFβ/Smad signaling by inactivating integrin β1 and inhibiting the polymerization of TGFβR1/2. The underlying mechanism involved the activation of FGFR1 by KLX, resulting in the phosphorylation of MAP4K4 and Moesin, which led to integrin β1 inactivation by displacing Talin from its β-tail. Oral administration of KLX effectively stimulated endothelial FGFR1 and inhibited integrin β1, thereby preventing vascular EndMT and attenuating plaque formation and progression in the aorta of atherosclerotic Apoe-/- mice. Notably, KLX (20 mg/kg) exhibited superior efficacy compared with atorvastatin, a clinically approved lipid-regulating drug. In conclusion, KLX exhibited potential in ameliorating EndMT and retarding the formation and progression of atherosclerosis through direct activation of FGFR1. Therefore, KLX is a promising candidate for the treatment of atherosclerosis to mitigate vascular endothelial injury.
Animals
;
Atherosclerosis/prevention & control*
;
Mice
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Signal Transduction/drug effects*
;
Anthraquinones/pharmacology*
;
Humans
;
Integrin beta1/metabolism*
;
Epithelial-Mesenchymal Transition/drug effects*
;
Male
;
Transforming Growth Factor beta/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Human Umbilical Vein Endothelial Cells/drug effects*
7.Effect of forsythiaside A against CCl_4-induced liver fibrosis in mice and its mechanism.
Qian GUO ; Yi ZHANG ; Zhen-Lin HUANG ; Bin LU ; Li-Li JI
China Journal of Chinese Materia Medica 2022;47(22):6137-6145
This study aims to investigate the efficacy of forsythiaside A(FTA) against CCl_4-induced liver fibrosis and the mechanism. Specifically, activities of serum alanine/aspartate aminotransferase(ALT/AST) and hydroxyproline(HYP) level in liver were detected, and pathological morphology of liver was observed based on hematoxylin-eosin(HE) staining, Masson's trichrome staining, and Sirius red staining of liver. On this basis, the effect of FTA on liver fibrosis was evaluated. The mRNA expression of actin alpha 2/α-smooth muscle actin(Acta2/α-SMA), transforming growth factor β(Tgfβ), collagen Ⅰ alpha 1(Col1 a1), and collagen Ⅲ alpha 1(Col3 a1) in liver tissue and hepatic stellate cells(HSC) was determined by qPCR, and the protein expression of α-SMA in liver tissue and HSC was measured by Western blot to assess the inhibition of FTA on HSC activation. The protein expression of α-SMA, vi-mentin(Vim), vascular endothelial cadherin(Ve-cadherin), and platelet endothelial cell adhesion molecule-1(PECAM-1/CD31) was measured by Western blot to evaluate the reverse of endothelial-mesenchymal transition(EMT) by FTA. The efficacy of FTA in relieving CCl_4-induced liver fibrosis was evidenced by the alleviation of hepatocyte necrosis, liver inflammation, and hepatic collagen deposition. FTA decreased the mRNA expression of Acta2, Tgfβ, Col1 a1, and Col3 a1 and protein expression of α-SMA both in vivo and in vitro. FTA reversed the increase of α-SMA and Vim and the decrease of CD31 and Ve-cadherin in livers from mice treated with CCl_4. Therefore, FTA alleviated CCl_4-induced liver fibrosis in mice via suppressing HSC activation and reversing EMT.
Animals
;
Mice
;
Actins/metabolism*
;
Alanine Transaminase/blood*
;
Carbon Tetrachloride/metabolism*
;
Collagen/metabolism*
;
Hepatic Stellate Cells
;
Liver/drug effects*
;
Liver Cirrhosis/genetics*
;
RNA, Messenger/metabolism*
;
Transforming Growth Factor beta/metabolism*
;
Glycosides/therapeutic use*
8.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*
9.Efficacy and safety of metformin for Behcet's disease and its effect on Treg/Th17 balance: a single-blinded, before-after study.
Chen YONG ; Luo DAN ; Lin CHENHONG ; Shen YAN ; Cai JIANFEI ; Guan JIANLONG
Journal of Southern Medical University 2019;39(2):127-133
OBJECTIVE:
Behcet's disease (BD) is an autoimmune disorder that causes most commonly mouth and genital ulcerations and erythema nodules of the skin and currently has limited options of therapeutic medicines. Metformin is recently reported to suppress immune reaction, and we hypothesized that metformin could be an option for treatment of BD.
METHODS:
Thirty patients with BD were enrolled in this perspective single-blinded, before-after study. We recorded the changes in the mucocutaneous activity index for BD (MAIBD), relapse frequency, C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR) after metformin treatment to assess the changes in the disease activity. We also analyzed the changes in the protein and mRNA expression levels of Foxp3, interleukin-35 (IL-35), transforming growth factor-β (TGF-β), Ror-γt, IL-17, and tumor necrosis factor- (TNF-) in these patients using ELISA and qRT-PCR.
RESULTS:
Of the 30 patients enrolled, 26 completed the trial. After the treatment, favorable responses were achieved in 88.46% (23/26) of the patients, and partial remission was obtained in 11.54% (4/26) of them. During the treatment, 8 patients complained of gastrointestinal side effects, for which 4 chose to withdraw from the study in the first week. Our results showed that metformin treatment decreased MAIBD and relapse frequency in the patients, and significantly lowered the clinical inflammatory indexes including CRP and ESR. The results of ELISA and qRT-PCR revealed that metformin treatment obviously increased Foxp3 and TGF-β expressions at both the protein and mRNA levels and significantly decreased the levels of ROR-γt, IL-17 and TNF- as well as IL-35 level in these patients.
CONCLUSIONS
Metformin treatment relieves the clinical symptoms, reduces the inflammatory reaction indexes and regulates the Treg/Th17 axis in patients with BD, suggesting the potential of metformin as a candidate medicine for treatment of BD.
Behcet Syndrome
;
drug therapy
;
metabolism
;
Controlled Before-After Studies
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Immunosuppressive Agents
;
adverse effects
;
therapeutic use
;
Interleukin-17
;
metabolism
;
Interleukins
;
metabolism
;
Metformin
;
adverse effects
;
therapeutic use
;
Neoplasm Recurrence, Local
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
metabolism
;
RNA, Messenger
;
metabolism
;
Recurrence
;
Single-Blind Method
;
T-Lymphocytes, Regulatory
;
cytology
;
Th17 Cells
;
cytology
;
Transforming Growth Factor beta
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis.
Zhenfei LI ; Lingling NIE ; Liping CHEN ; Yafei SUN ; Li GUO
Journal of Southern Medical University 2019;39(1):35-42
OBJECTIVE:
To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism.
METHODS:
An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting.
RESULTS:
High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 3.52 ± 0.32). In the experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes.
CONCLUSIONS
Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
therapeutic use
;
Cell Differentiation
;
drug effects
;
Encephalomyelitis, Autoimmune, Experimental
;
drug therapy
;
metabolism
;
Interferon-gamma
;
metabolism
;
Interleukins
;
metabolism
;
Lymphocytes
;
cytology
;
Mice
;
Mice, Inbred C57BL
;
Sirolimus
;
administration & dosage
;
therapeutic use
;
Smad Proteins
;
metabolism
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Transforming Growth Factor beta
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail