1.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
2.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*
3.Climate change, air pollution and chronic respiratory diseases: understanding risk factors and the need for adaptive strategies.
Jiayu XU ; Zekang SU ; Chenchen LIU ; Yuxuan NIE ; Liangliang CUI
Environmental Health and Preventive Medicine 2025;30():7-7
Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens. Furthermore, this association can be modified by factors such as socioeconomic status, adaptability, individual behavior, medical services. Potential pathophysiological mechanisms linking climate change and increased risk of CRD involved pulmonary inflammation, immune disorders, oxidative stress. Notably, the elderly, children, impoverished groups and people in regions with limited adaptability are more sensitive to respiratory health risks caused by climate change. This review provides a reference for understanding risk factors of CRD in the context of climate change, and calls for the necessity of adaptive strategies. Further interdisciplinary research and global collaboration are needed in the future to enhance adaptability and address climate health inequality.
Climate Change
;
Humans
;
Air Pollution/adverse effects*
;
Risk Factors
;
Respiratory Tract Diseases/etiology*
;
Chronic Disease
;
Air Pollutants/adverse effects*
;
Environmental Exposure/adverse effects*
4.Lead exposure promotes NF2-wildtype meningioma cell proliferation through the Merlin-Hippo signaling pathway.
Nenghua ZHANG ; Xiaohua SHEN ; Yunnong YU ; Long XU ; Zheng WANG ; Jia ZHU
Environmental Health and Preventive Medicine 2025;30():8-8
BACKGROUND:
Lead is a persistent inorganic environmental pollutant with global implication for human health. Among the diseases associated with lead exposure, the damage to the central nervous system has received considerable attention. It has been reported that long-term lead exposure increases the risk of meningioma; however, the underlying mechanism remains poorly understood. Clinical studies have indicated that loss-of-function and mutations in the neurofibromin-2 (NF2) gene play a crucial role in promoting meningioma formation.
METHODS:
The effect of Pb on meningioma were tested in-vitro and in-vivo. Two human meningioma cell lines were used in this study, including NF2-wildtype IOMM-Lee cell and NF2-null CH157-MN cell. Cell viability, cell cycle and cell size were examined after Pb exposure. The expression of Merlin, mammalian sterile 20-like kinases 1 and 2 (MST1/2) and Yes-associated protein (YAP) from these two meningioma cells were analyzed by Western blot. A xenograft mouse model was constructed by subcutaneous injection of IOMM-Lee meningioma cells.
RESULTS:
This study demonstrated that treatment with lead induce dose-dependent proliferation in IOMM-Lee cell (with an EC50 value of 19.6 µM). Moreover, IOMM-Lee cell exhibited augmented cell size in conjunction with elevated levels of phosphorylated histone H3, indicative of altered cell cycle progression resulting from lead exposure. However, no significant change was observed in the CH157-MN cell. Additionally, the Merlin-Hippo signaling pathway was inactivated with decreased Merlin and phosphorylation levels of MST1/2 and YAP, leading to increased YAP nuclear translocation in IOMM-Lee cells. However, there was no change in the Merlin-Hippo signaling pathway in CH157-MN cells after lead treatment. The administration of Pb resulted in an acceleration of the subcutaneous IOMM-Lee meningioma xenograft growth in mice.
CONCLUSIONS
Overall, the current study elucidates the potential mechanism by which lead exposure promotes the proliferation of meningioma with NF2 expression for the first time.
Meningioma/genetics*
;
Neurofibromin 2/genetics*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Signal Transduction/drug effects*
;
Mice
;
Hippo Signaling Pathway
;
Lead/adverse effects*
;
Cell Line, Tumor
;
Protein Serine-Threonine Kinases/genetics*
;
Meningeal Neoplasms
;
Environmental Pollutants/adverse effects*
;
Female
5.Serum protein α-klotho mediates the association between lead, mercury, and kidney function in middle-aged and elderly populations.
Lin JIANG ; Tingting GUO ; Xin ZHONG ; Yini CAI ; Wanyu YANG ; Jun ZHANG
Environmental Health and Preventive Medicine 2025;30():10-10
BACKGROUND:
Heavy metals are significant risk factors for kidney function. Numerous studies have shown that exposure to heavy metals negatively correlates with kidney function through oxidative stress pathways, and serum α-klotho is linked to oxidative stress. However, the role of α-klotho in the relationship between blood lead, mercury, and kidney function remains unclear.
METHOD:
This study evaluated the mediating role of alpha-klotho in the relationship between lead, mercury and renal function, using data from the 2007-2016 National Health and Nutrition Examination Survey (NHANES) in U.S. adults aged 40-79. The sample included 11,032 participants, with blood lead, mercury, α-klotho, and other relevant covariates measured. Inductively coupled plasma mass spectrometry was used to assess blood lead and mercury levels, and enzyme-linked immunosorbent assay (ELISA) was employed to measure serum α-klotho. Kidney function was evaluated using estimated glomerular filtration rate (eGFR) based on creatinine levels. Multivariable linear regression was conducted to analyze the relationships between blood lead, mercury, α-klotho, and eGFR. A mediation analysis model was used to assess whether α-klotho influenced these associations.
RESULTS:
We observed a significant association between blood lead and eGFR. Mediation analysis revealed that α-klotho accounted for 12.76% of the relationship between serum lead and eGFR in the NHANES population. Subgroup analysis showed that α-klotho mediated 12.43%, 6.87%, 21.50% and 5.44% of the relationship between blood lead and eGFR in women, middle-aged adults (40-59 years old), without cardiovascular disease and hypertension, respectively. However, α-klotho did not mediate the relationship between blood mercury and eGFR in terms of gender or age. This newly identified pathway may provide valuable insights for the prevention and treatment mechanisms related to kidney function impairment.
CONCLUSION
We found that blood lead was associated with renal function. According to the results of subgroup analysis, for blood lead, serum α-klotho mediated the association in females, middle aged 60-79 years. The relationship between blood mercury and renal function was not clinically significant, and serum α-Klotho mediated the relationship between blood mercury and renal function without significant clinical significance.
Humans
;
Middle Aged
;
Lead/blood*
;
Female
;
Klotho Proteins
;
Male
;
Aged
;
Adult
;
Mercury/blood*
;
Glomerular Filtration Rate
;
Nutrition Surveys
;
United States
;
Kidney/physiology*
;
Glucuronidase/blood*
;
Environmental Pollutants/blood*
6.Impacts of short-term exposure to ambient air pollutants on outpatient visits for respiratory diseases in children: a time series study in Yichang, China.
Lu CHEN ; Zhongcheng YANG ; Yingdong CHEN ; Wenhan WANG ; Chen SHAO ; Lanfang CHEN ; Xiaoyan MING ; Qiuju ZHANG
Environmental Health and Preventive Medicine 2025;30():16-16
BACKGROUND:
There is growing evidence that the occurrence and severity of respiratory diseases in children are related to the concentration of air pollutants. Nonetheless, evidence regarding the association between short-term exposure to air pollution and outpatient visits for respiratory diseases in children remains limited. Outpatients cover a wide range of disease severity, including both severe and mild cases, some of which may need to be transferred to inpatient treatment. This study aimed to quantitatively evaluate the impact of short-term ambient air pollution exposure on outpatient visits for respiratory conditions in children.
METHODS:
This study employed data of the Second People's Hospital of Yichang from January 1, 2016 to December 31, 2023, to conduct a time series analysis. The DLNM approach was integrated with a generalized additive model to examine the daily outpatient visits of pediatric patients with respiratory illnesses in hospital, alongside air pollution data obtained from monitoring stations. Adjustments were made for long-term trends, meteorological variables, and other influencing factors.
RESULTS:
A nonlinear association was identified between PM2.5, PM10, O3, NO2, SO2, CO levels and the daily outpatient visits for respiratory diseases among children. All six pollutants exhibit a hysteresis impact, with varying durations ranging from 4 to 6 days. The risks associated with air pollutants differ across various categories of children's respiratory diseases; notably, O3 and CO do not show statistical significance concerning the risk of chronic respiratory conditions. Furthermore, the results of infectious respiratory diseases were similar with those of respiratory diseases.
CONCLUSIONS
Our results indicated that short-term exposure to air pollutants may contribute to an increased incidence of outpatient visits for respiratory illnesses among children, and controlling air pollution is important to protect children's health.
Humans
;
China/epidemiology*
;
Air Pollutants/analysis*
;
Respiratory Tract Diseases/chemically induced*
;
Child
;
Child, Preschool
;
Environmental Exposure/adverse effects*
;
Air Pollution/analysis*
;
Infant
;
Male
;
Particulate Matter/adverse effects*
;
Female
;
Ambulatory Care/statistics & numerical data*
;
Outpatients/statistics & numerical data*
;
Adolescent
;
Infant, Newborn
7.Determination of skin-insect repellent icaridin and DEET in human urine using solid-phase extraction and liquid chromatography with tandem mass spectrometry and its application to a sample of Japanese adults.
Nanami NISHIHARA ; Tomohiko ISOBE ; Mai TAKAGI ; Toshiki TAJIMA ; Yugo KITAHARA ; Mai HAYASHI ; Isao SAITO ; Satoru WATANABE ; Miyuki IWAI-SHIMADA ; Jun UEYAMA
Environmental Health and Preventive Medicine 2025;30():18-18
BACKGROUND:
Icaridin and DEET are common insect repellents widely used on human skin and clothing (skin-insect repellents [skin-IR]) to repel common pests, such as mosquitoes and biting flies. Novel analytical methods for urinary skin-IR exposure biomarkers that can be effectively applied in epidemiological studies and provide strong evidence related to risk assessment associated with daily exposure are required. In this study, we aimed to develop a method for analyzing the concentrations of icaridin, DEET, and two DEET metabolites N,N-diethyl-3-(hydroxymethyl) benzamide and 3-(diethylcarbamoyl) benzoic acid in human urine.
METHODS:
In this analysis, after formic acid-induced acidification of the urine sample, exposure biomarkers were extracted using solid-phase extraction composed of a modified polystyrenedivinylbenzene polymer for reversed phase (hydrophobic) retention. Subsequently, high-performance liquid chromatography-tandem mass spectrometry was performed within 10 min for a separation analysis. The present method was applied to five Japanese adults (aged 20-43 years) who used icaridin or DEET-containing products within a week.
RESULTS:
Limits of detection were 0.06-0.11 µg/L. Extraction recoveries were 74%-88%. The intraday and interday variations were 1.5-17.5 and 0.9-15.8% relative standard deviation, respectively. All exposure biomarkers were successfully detected in all five adults. Urinary concentrations of exposure biomarkers reached their maximum values within 15 h after starting to use skin-IR.
CONCLUSIONS
This method was successful in measuring urinary exposure biomarkers of skin-IR, including icaridin and DEET. Moreover, this study presents the first application of biomonitoring of urinary icaridin concentrations after using a commercial product.
Humans
;
Solid Phase Extraction/methods*
;
Tandem Mass Spectrometry/methods*
;
Adult
;
Insect Repellents/urine*
;
DEET/urine*
;
Young Adult
;
Male
;
Japan
;
Female
;
Chromatography, Liquid
;
Biomarkers/urine*
;
Chromatography, High Pressure Liquid
;
East Asian People
8.Plasma club cell secretory protein reflects early lung injury: comprehensive epidemiological evidence.
Jiajun WEI ; Jinyu WU ; Hongyue KONG ; Liuquan JIANG ; Yong WANG ; Ying GUO ; Quan FENG ; Jisheng NIE ; Yiwei SHI ; Xinri ZHANG ; Xiaomei KONG ; Xiao YU ; Gaisheng LIU ; Fan YANG ; Jun DONG ; Jin YANG
Environmental Health and Preventive Medicine 2025;30():26-26
BACKGROUND:
It is inaccurate to reflect the level of dust exposure through working years. Furthermore, identifying a predictive indicator for lung function decline is significant for coal miners. The study aimed to explored whether club cell secretory protein (CC16) levels can reflect early lung function changes.
METHODS:
The cumulative respiratory dust exposure (CDE) levels of 1,461 coal miners were retrospectively assessed by constructed a job-exposure matrix to replace working years. Important factors affecting lung function and CC16 were selected by establishing random forest models. Subsequently, the potential of CC16 to reflect lung injury was explored from multiple perspectives. First, restricted cubic spline (RCS) models were used to compare the trends of changes in lung function indicators and plasma CC16 levels after dust exposure. Then mediating analysis was performed to investigate the role of CC16 in the association between dust exposure and lung function decline. Finally, the association between baseline CC16 levels and follow-up lung function was explored.
RESULTS:
The median CDE were 35.13 mg/m3-years. RCS models revealed a rapid decline in forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and their percentages of predicted values when CDE exceeded 25 mg/m3-years. The dust exposure level (<5 mg/m3-years) causing significant changes in CC16 was much lower than the level (25 mg/m3-years) that caused changes in lung function indicators. CC16 mediated 11.1% to 26.0% of dust-related lung function decline. Additionally, workers with low baseline CC16 levels experienced greater reductions in lung function in the future.
CONCLUSIONS
CC16 levels are more sensitive than lung indicators in reflecting early lung function injury and plays mediating role in lung function decline induced by dust exposure. Low baseline CC16 levels predict poor future lung function.
Uteroglobin/blood*
;
Humans
;
Dust/analysis*
;
Occupational Exposure/analysis*
;
Male
;
Middle Aged
;
Adult
;
Retrospective Studies
;
Lung Injury/chemically induced*
;
Coal Mining
;
Biomarkers/blood*
;
China/epidemiology*
;
Air Pollutants, Occupational
;
Female
9.Air pollution and adult hospital admissions for ischemic stroke: a time-series analysis in Inner Mongolia, China.
Sen FENG ; Chunhua LI ; Yujing JIN ; Haibo WANG ; Ruying WANG ; Zakaria Ahmed MOHAMED ; Yulong ZHANG ; Yan YAO
Environmental Health and Preventive Medicine 2025;30():29-29
BACKGROUND:
Previous studies have demonstrated that short-term exposure to ambient particulate matter elevates the risk of ischemic stroke in major urban areas of various countries. However, there is a notable gap in research focusing on remote areas inhabited by ethnic minorities and the cumulative effects of air pollutants. Our study conducted in the area aims to explore the potential association between ischemic stroke and air pollutants and contribute to improving health outcomes among the community.
METHODS:
This retrospective observational study was conducted at the Xing'an League People's Hospital in Inner Mongolia. The medical records of 4,288 patients admitted for IS between November 1, 2019, and October 31, 2020, were reviewed. Data on demographics (age and sex), air pollutants (PM10, PM2.5, NO2, NO, CO, and O3), and meteorological factors (daily average temperature, daily average wind speed, and daily average atmosphere pressure) were collected and analyzed. The statistical analysis included descriptive statistics, Poisson distribution analysis to evaluate the adverse effects of atmospheric pollutants on daily hospitalizations, and subgroup analysis to determine whether gender and age could modify the impact on hospitalizations.
RESULTS:
A substantial correlation was revealed in single-day lags model. The peak delayed effects of PM10, PM2.5, SO2, and NO2 were observed at lag8 (PM10 (OR = 1.016, 95%CI 1.002, 1.030), PM2.5 (OR = 1.027, 95%CI 1.007, 1.048), SO2 (OR = 1.153, 95%CI 1.040, 279) and NO2 (OR = 1.054, 95%CI 1.005, 1.105)) while males exhibited a consistent trend from lag0 to lag8 (PM10 (OR = 1.035, 95%CI 1.018, 1.053), PM2.5 (OR = 1.056, 95%CI 1.030, 1.082), SO2 (OR = 1.220, 95%CI 1.072, 1.389), NO2 (OR = 1.126, 95%CI 1.061, 1.120), CO (OR = 10.059, 95%CI 1.697, 59.638) and O3 (OR = 0.972, 95%CI 0.946, 0.999)). When gender and age were considered, a positive impact was also observed after three days cumulative effect in males.
CONCLUSIONS
There is a significant cumulative effect of exposure to air pollution on IS hospital admissions, especially the males and patients under the age of 65. Our results also suggested that a notable association between CO and NO2 in two-pollutant models.
Humans
;
Male
;
Female
;
Air Pollution/analysis*
;
China/epidemiology*
;
Retrospective Studies
;
Middle Aged
;
Air Pollutants/analysis*
;
Aged
;
Particulate Matter/analysis*
;
Hospitalization/statistics & numerical data*
;
Adult
;
Ischemic Stroke/chemically induced*
;
Environmental Exposure/adverse effects*
;
Aged, 80 and over
10.Epidemiological studies on the health impact of air pollution in Japan: their contribution to the improvement of ambient air quality.
Environmental Health and Preventive Medicine 2025;30():30-30
In Japan, during the high economic growth period (1950-1960s), air pollution due to sulfur dioxide (SO2) and dust derived from large-scale factories and power plants was apparent in many industrial districts, and it caused serious health problems such as the so-called "Yokkaichi Asthma." Many epidemiological studies have revealed the relationship between air pollution and respiratory diseases, and have provided scientific evidence for the regulatory control of air pollution. The concentration of SO2 has markedly decreased since the 1970s, and its adverse health effects have improved. In contrast, increased automobile traffic has caused considerable traffic-related air pollution, including nitrogen oxides (NOx) and particulate matter (PM). Epidemiological studies in Chiba and Tokyo revealed that the prevalence and incidence of asthma were significantly higher among individuals living in roadside areas than among those living in other areas. Large-scale epidemiological studies conducted in urban districts have revealed an association between traffic-related air pollution and the onset of asthma in schoolchildren and persistence of asthmatic symptoms in preschool children. Thereafter, the concentrations of NOx and PM gradually decreased due to the control measures based on the Automobile NOx/PM Law enforced in 2001. Thus, epidemiological studies have contributed to a reduction in air pollution caused by automobile exhaust emissions. Recently, the adverse health effects of ambient fine PM (PM2.5) and ozone (O3) at ground level have become an international concern. Our epidemiological studies showed that short-term exposure to considerably low concentrations of PM2.5 and O3 was associated with a decrease in pulmonary function among asthmatic children and increased airway inflammation in healthy adolescents. The effects of exposure to PM2.5 during pregnancy and early childhood on children's development have also been reported. These air pollutants consist of not only emissions from primary sources but also secondary formations in the atmosphere. They are affected by climate change and spread worldwide. Air quality control measures and climate change adaptation and mitigation strategies are synergistic, and will have co-benefits on human health. Therefore, global efforts are required to protect populations from the health risks posed by these air pollutants.
Japan/epidemiology*
;
Humans
;
Air Pollution/analysis*
;
Air Pollutants/adverse effects*
;
Particulate Matter/adverse effects*
;
Asthma/chemically induced*
;
Vehicle Emissions
;
Epidemiologic Studies
;
Environmental Exposure/adverse effects*
;
Sulfur Dioxide/analysis*

Result Analysis
Print
Save
E-mail