1.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
2.Development of intelligent equipment for rapid microbial detection of Atractylodis Macrocephalae Rhizoma decoction pieces based on measurement technology for traditional Chinese medicine manufacturing.
Yang LIU ; Wu-Zhen QI ; Yu-Tong WU ; Shan-Xi ZHU ; Xiao-Jun ZHAO ; Qia-Tong XIE ; Yu-Feng GUO ; Jing ZHAO ; Nan LI ; Shi-Jun WANG ; Qi-Hui SUN ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(16):4610-4618
Microbial detection and control of traditional Chinese medicine(TCM) decoction pieces are crucial for the quality control of TCM preparations. It is also a key area of research in the measurement technology and equipment development for TCM manufacturing. Guided by TCM manufacturing measurement methodologies, this study presented a design of a novel portable microbial detection device, using Atractylodis Macrocephalae Rhizoma decoction pieces as a demonstration. Immunomagnetic separation technology was employed for specific isolation and labeling of target microorganisms. Enzymatic signal amplification was utilized to convert weak biological signals into colorimetric signals, constructing an optical biosensor. A self-developed smartphone APP was further applied to analyze the colorimetric signals and quantify target concentrations. A portable and automated detection system based on Arduino microcontroller was developed to automatically perform target microbial separation/extraction, as well as mimetic enzyme labeling and catalytic reactions. The developed equipment specifically focuses on the rapid and quantitative microbial analysis of TCM active pharmaceutical ingredients, intermediates in TCM manufacturing, and final TCM products. Experimental results demonstrate that the equipment could detect Salmonella in samples within 2 h, with a detection limit as low as 5.1 × 10~3 CFU·mL~(-1). The equipment enables the rapid detection of microorganisms in TCM decoction pieces, providing a potential technical solution for on-site rapid screening of microbial contamination indicators in TCM. It has broad application prospects in measurement technology for TCM manufacturing and offers strong technical support for the modernization, industrialization, and intelligent development of TCM.
Drugs, Chinese Herbal/analysis*
;
Atractylodes/microbiology*
;
Rhizome/microbiology*
;
Biosensing Techniques/methods*
;
Medicine, Chinese Traditional
;
Colorimetry/instrumentation*
;
Quality Control
3.Single-incision laparoscopic totally extraperitoneal retrieval of retroperitoneal vas deferens in vasovasostomy for obstructive azoospermia patients postchildhood bilateral herniorrhaphy.
Chen-Wang ZHANG ; Wei-Dong WU ; Jun-Wei XU ; Jing-Peng ZHAO ; Er-Lei ZHI ; Yu-Hua HUANG ; Chen-Cheng YAO ; Fu-Jun ZHAO ; Zheng LI ; Peng LI
Asian Journal of Andrology 2025;27(1):137-138
4.The Frequency Difference of Red Blood Cell Group Gene Haplotypes among Han, Indian and Uyghur Populations in Shenzhen Region.
Tong LIU ; Jin QIU ; Fan WU ; Yan-Lia LIANG ; Li-Yan SUN ; Zhi-Hui DENG ; Shuang LIANG
Journal of Experimental Hematology 2025;33(3):863-868
OBJECTIVE:
To study the genetic polymorphism of red blood cell blood group among in Shenzhen Han, Indian and Xinjiang Uyghur populations, to provide scientific basis for the demand prediction and collection strategy of rare blood group, and to explore the genetic differences of blood group between Han and Caucasians.
METHODS:
The haplotypes of antigen coding genes of 10 target blood group systems from 87 Han Chinese and 50 Indian blood donors in Shenzhen, and 49 healthy Uyghur people in Xinjiang were obtained by three-generation sequencing technology, and the polymorphism and frequency characteristics were analyzed.
RESULTS:
Only a single genotype was detected the Langereis and Vel blood group systems in samples from three different populations. Only one genotype of Dombrock blood group was detected in Shenzhen Han, and Junior blood group in Xinjiang Uygur populations. In the MNS, Duffy, Kidd, Dombrock and Junior blood group systems, the haplotype frequency of Indian and Uyghur people was significantly different from that of Han people. Compared with the Han ethnic group, the rare blood group s-, Fy(a-), Jk(a-b-), and Do(a+b-) have a higher frequency among the Uyghur and Indian populations.
CONCLUSION
Haplotype frequencies of antigen genes for MNS, Duffy, Kidd, Dombrock and Junior blood group system in Shenzhen Han, Indian and Uyghur populations displayed a polymorphic difference with unique distribution characteristics different from the ethnic groups in other regions.
Humans
;
Blood Group Antigens/genetics*
;
China/ethnology*
;
Erythrocytes
;
Ethnicity/genetics*
;
Gene Frequency
;
Genotype
;
Haplotypes
;
India/ethnology*
;
Polymorphism, Genetic
;
White People/genetics*
;
Central Asian People/genetics*
;
East Asian People/genetics*
5.Nonsurgical Treatment of Chronic Subdural Hematoma Patients with Chinese Medicine: Case Report Series.
Kang-Ning LI ; Wei-Ming LIU ; Ying-Zhi HOU ; Run-Fa TIAN ; Shuo ZHANG ; Liang WU ; Long XU ; Jia-Ji QIU ; Yan-Ping TONG ; Tao YANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2025;31(10):937-941
6.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
7.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
8.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
9.Causal Associations between Particulate Matter 2.5 (PM 2.5), PM 2.5 Absorbance, and Inflammatory Bowel Disease Risk: Evidence from a Two-Sample Mendelian Randomization Study.
Xu ZHANG ; Zhi Meng WU ; Lu ZHANG ; Bing Long XIN ; Xiang Rui WANG ; Xin Lan LU ; Gui Fang LU ; Mu Dan REN ; Shui Xiang HE ; Ya Rui LI
Biomedical and Environmental Sciences 2025;38(2):167-177
OBJECTIVE:
Several epidemiological observational studies have related particulate matter (PM) exposure to Inflammatory bowel disease (IBD), but many confounding factors make it difficult to draw causal links from observational studies. The objective of this study was to explore the causal association between PM 2.5 exposure, its absorbance, and IBD.
METHODS:
We assessed the association of PM 2.5 and PM 2.5 absorbance with the two primary forms of IBD (Crohn's disease [CD] and ulcerative colitis [UC]) using Mendelian randomization (MR) to explore the causal relationship. We conducted two-sample MR analyses with aggregated data from the UK Biobank genome-wide association study. Single-nucleotide polymorphisms linked with PM 2.5 concentrations or their absorbance were used as instrumental variables (IVs). We used inverse variance weighting (IVW) as the primary analytical approach and four other standard methods as supplementary analyses for quality control.
RESULTS:
The results of MR demonstrated that PM 2.5 had an adverse influence on UC risk (odds ratio [ OR] = 1.010; 95% confidence interval [ CI] = 1.001-1.019, P = 0.020). Meanwhile, the results of IVW showed that PM 2.5 absorbance was also causally associated with UC ( OR = 1.012; 95% CI = 1.004-1.019, P = 0.002). We observed no causal relationship between PM 2.5, PM 2.5 absorbance, and CD. The results of sensitivity analysis indicated the absence of heterogeneity or pleiotropy, ensuring the reliability of MR results.
CONCLUSION
Based on two-sample MR analyses, there are potential positive causal relationships between PM 2.5, PM 2.5 absorbance, and UC.
Humans
;
Mendelian Randomization Analysis
;
Particulate Matter/analysis*
;
Polymorphism, Single Nucleotide
;
Inflammatory Bowel Diseases/genetics*
;
Air Pollutants/analysis*
;
Crohn Disease/genetics*
;
Colitis, Ulcerative/genetics*
;
Genome-Wide Association Study
;
Risk Factors
;
Environmental Exposure
10.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.

Result Analysis
Print
Save
E-mail