1.Research on a portable electrical impedance tomography system for evaluating blood compatibility of biomaterials.
Piao PENG ; Huaihao CHEN ; Bo CHE ; Xuan LI ; Chunjian FAN ; Lei LIU ; Teng LUO ; Linhong DENG
Journal of Biomedical Engineering 2025;42(2):219-227
The evaluation of blood compatibility of biomaterials is crucial for ensuring the clinical safety of implantable medical devices. To address the limitations of traditional testing methods in real-time monitoring and electrical property analysis, this study developed a portable electrical impedance tomography (EIT) system. The system uses a 16-electrode design, operates within a frequency range of 1 to 500 kHz, achieves a signal to noise ratio (SNR) of 69.54 dB at 50 kHz, and has a data collection speed of 20 frames per second. Experimental results show that the EIT system developed in this study is highly consistent with a microplate reader ( R 2=0.97) in detecting the hemolytic behavior of industrial-grade titanium (TA3) and titanium alloy-titanium 6 aluminum 4 vanadium (TC4) in anticoagulated bovine blood. Additionally, with the support of a multimodal image fusion Gauss-Newton one-step iterative algorithm, the system can accurately locate and monitor in real-time the dynamic changes in blood permeation and coagulation caused by TC4 in vivo. In conclusion, the EIT system developed in this study provides a new and effective method for evaluating the blood compatibility of biomaterials.
Electric Impedance
;
Animals
;
Tomography/instrumentation*
;
Biocompatible Materials
;
Materials Testing/instrumentation*
;
Cattle
;
Titanium
;
Alloys
;
Prostheses and Implants
2.A method for determining spatial resolution of phantom based on automatic contour delineation.
Ying LIU ; Minghao SUN ; Haowei ZHANG ; Haikuan LIU
Journal of Biomedical Engineering 2025;42(2):263-271
In this study, we propose an automatic contour outlining method to measure the spatial resolution of homemade automatic tube current modulation (ATCM) phantom by outlining the edge contour of the phantom image, selecting the region of interest (ROI), and measuring the spatial resolution characteristics of computer tomography (CT) phantom image. Specifically, the method obtains a binarized image of the phantom outlined by an automated fast region convolutional neural network (AFRCNN) model, measures the edge spread function (ESF) of the CT phantom with different tube currents and layer thicknesses, and differentiates the ESF to obtain the line spread function (LSF). Finally, the values passing through the zeros are normalized by the Fourier transform to obtain the CT spatial resolution index (RI) for the automatic measurement of the modulation transfer function (MTF). In this study, this algorithm is compared with the algorithm that uses polymethylmethacrylate (PMMA) to measure the MTF of the phantom edges to verify the feasibility of this method, and the results show that the AFRCNN model not only improves the efficiency and accuracy of the phantom contour outlining, but also is able to obtain a more accurate spatial resolution value through automated segmentation. In summary, the algorithm proposed in this study is accurate in spatial resolution measurement of phantom images and has the potential to be widely used in real clinical CT images.
Phantoms, Imaging
;
Tomography, X-Ray Computed/instrumentation*
;
Algorithms
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Polymethyl Methacrylate
3.Biomechanical advantages of personalized Y-shaped plates in treatment of distal humeral intra-articular fractures.
Hao YU ; Jiachen PENG ; Jibin YANG ; Lidan YANG ; Zhi XU ; Chen YANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):574-583
OBJECTIVE:
To compare the biomechanical properties of personalized Y-shaped plates with horizontal plates, vertical plates, and traditional Y-shaped plates in the treatment of distal humeral intra-articular fractures through finite element analysis, and to evaluate their potential for clinical application.
METHODS:
The study selected a 38-year-old male volunteer and obtained a three-dimensional model of the humerus by scanning his upper limbs using a 64-slice spiral CT. Four types of fracture-internal fixation models were constructed using Mimics 19.0, Geomagic Wrap 2017, Creo 6.0, and other software: horizontal plates, vertical plates, traditional Y-shaped plate, and personalized Y-shaped plate. The models were then meshed using Hypermesh 14.0 software, and material properties and boundary conditions were defined in Abaqus 6.14 software. AnyBody 7.3 software was used to simulate elbow flexion and extension movements, calculate muscle strength, joint forces, and load torques, and compare the peak stress and maximum displacement of the four fixation methods at different motion angles (10°, 30°, 50°, 70°, 90°, 110°, 130°, 150°) during elbow flexion and extension.
RESULTS:
Under dynamic loading during elbow flexion and extension, the personalized Y-shaped plate exhibits significant biomechanical advantages. During elbow flexion, the peak internal fixation stress of the personalized Y-shaped plate was (28.8±0.9) MPa, which was significantly lower than that of the horizontal plates, vertical plates, and traditional Y-shaped plate ( P<0.05). During elbow extension, the peak internal fixation stress of the personalized Y-shaped plate was (18.1±1.6) MPa, which was lower than those of the other three models, with significant differences when compared with horizontal plates and vertical plates ( P<0.05). Regarding the peak humeral stress, the personalized Y-shaped plate model showed mean values of (10.9±0.8) and (13.1±1.4) MPa during elbow flexion and extension, respectively, which were significantly lower than those of the other three models ( P<0.05). Displacement analysis showed that the maximum displacement of the humerus with the personalized Y-shaped plate during elbow flexion was (2.03±0.08) mm, slightly higher than that of the horizontal plates, but significantly lower than that of the vertical plates, showing significant differences ( P<0.05). During elbow extension, the maximum displacement of the humerus with the personalized Y-shaped plate was (1.93±0.13) mm, which was lower than that of the other three models, with significant differences when compared with vertical plates and traditional Y-shaped plates ( P<0.05). Stress contour analysis showed that the stress of the personalized Y-shaped plate was primarily concentrated at the bifurcation of the Y-shaped structure. Displacement contour analysis showed that the personalized Y-shaped plate effectively controlled the displacement of the distal humerus during both flexion and extension, demonstrating excellent stability.
CONCLUSION
The personalized Y-shaped plate demonstrates excellent biomechanical performance in the treatment of distal humeral intra-articular fractures, with lower stress and displacement, providing more stable fixation effects.
Humans
;
Male
;
Adult
;
Healthy Volunteers
;
Finite Element Analysis
;
Tomography, Spiral Computed
;
Models, Anatomic
;
Biomechanical Phenomena
;
Humeral Fractures, Distal/surgery*
;
Fracture Fixation, Internal/instrumentation*
;
Bone Plates
;
Computer Simulation
;
Precision Medicine/methods*
;
Elbow Joint/surgery*
;
Elbow/surgery*
;
Humerus/surgery*
;
Torque
;
Stress, Mechanical
;
Intra-Articular Fractures/surgery*
;
Prosthesis Design/methods*
;
Imaging, Three-Dimensional
;
Range of Motion, Articular
4.Finite element analysis of adding one transverse screw for Pauwels type Ⅲ femoral neck fractures.
Luyao MA ; Xueao SUN ; Qingjun TAN ; Yanping LAN ; Xiaohu WANG ; Yunsheng YIN ; Jinhui MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):584-591
OBJECTIVE:
To investigate whether adding 1 transverse screw (TS) to the triangular parallel cannulated screw (TPCS) fixation has a mechanical stability advantage for Pauwels type Ⅲ femoral neck fractures by conducting finite element analysis on four internal fixation methods.
METHODS:
Based on CT data of a healthy adult male volunteer's femur, three Pauwels type Ⅲ femoral neck fracture models (Pauwels angle 70°, Pauwels angle 80°, and Pauwels angle 70° combined with bone defect) were constructed using Mimics 21.0 software and SolidWorks 2017 software. Four different internal fixation models were built at the same time, including TPCS, TPCS+TS, three cross screws (TCS), and TPCS+medial buttress plate (MBP). The mechanical stability of different models under the same load was compared by finite element analysis.
RESULTS:
The femoral model established in this study exhibited a maximum stress of 28.62 MPa, with relatively higher stress concentrated in the femoral neck. These findings were comparable to previous studies, indicating that the constructed femoral finite element model was correct. The maximum stress of internal fixation in finite element analysis showed that TCS was the lowest and TPCS+MBP was the highest in Pauwels angle 70° and 80° models, while TPCS+TS was the lowest and TCS was the highest in Pauwels angle 70° combined with bone defect model. The maximum displacement of internal fixation in each fracture model was located at the top of the femoral head, with TCS having the highest maximum displacement of the femur. The maximum stress of fracture surface in finite element analysis showed that TCS was the lowest and TPCS was the highest in the Pauwels angle 70° model, while TPCS+MBP was the lowest and TPCS/TCS were the highest in the Pauwels angle 80° model and the Pauwels angle 70° combined with bone defect model, respectively. The maximum displacement of fracture surfece analysis showed that TPCS+MBP was the lowest and TCS was the highest in Pauwels angle 70° and 80° models, while TPCS+TS was the lowest and TCS was the highest in Pauwels angle 70° combined with bone defect model.
CONCLUSION
For Pauwels type Ⅲ femoral neck fractures, the biomechanical stability of TPCS+TS was superior to that of TPCS alone and TCS, but it has not yet reached the level of TPCS+MBP.
Finite Element Analysis
;
Humans
;
Femoral Neck Fractures/diagnostic imaging*
;
Bone Screws
;
Fracture Fixation, Internal/instrumentation*
;
Male
;
Bone Plates
;
Stress, Mechanical
;
Biomechanical Phenomena
;
Tomography, X-Ray Computed
;
Adult
;
Femur Neck/surgery*
5.Comparative study on implantation safety and stability of S 1 and S 2 sacral alar-iliac screws for sacroiliac joint fixation.
Qun CHEN ; Feng JI ; Qudong YIN ; Dong LI ; Xiaofei HAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):723-728
OBJECTIVE:
To explore the differences in the implantation safety and stability of a S 1 alar-iliac screw (S1AIS) or S2AIS for sacroiliac joint fixation, providing reference for selecting appropriate internal fixation in clinical practice.
METHODS:
Patients who underwent pelvic CT examination between January 2024 and December 2024 were selected. CT data from 80 patients with normal pelvic structure who met the selection criteria were included in a 1∶1 male to female ratio. CT digital reconstruction technology was used to measure the transverse and longitudinal diameters of the S1AIS and S2AIS insertable ranges, as well as the length, width, and sacral side length of the screw trajectory. The pelvic CT data from 30 patients were randomly selected based on a 1∶1 male to female ratio for three-dimensional (3D) printing of pelvic samples. The S1AIS/S2AIS with a diameter of 6.5 mm and 8.0 mm were implanted at the optimal entry/exit points on the left and right sides, respectively, to observe the perforation of the screw trajectory. The pelvic CT data from 1 patient was randomly selected for 3D printing of 10 pelvic samples to simulate Tile C2 fracture. They were divided into S1AIS group ( n=5) and S2AIS group ( n=5), with one S1AIS and one S2AIS fixation used for posterior sacroiliac joint separation, and the specimen stiffness and maximum load were measured by using an electric tension torsion dual axis universal mechanical tester.
RESULTS:
The anatomical parameter measurement showed that there was no significant difference in the length and width of the screw trajectory between S1AIS and S2AIS ( P>0.05), but the transverse and longitudinal diameters of the insertable ranges, as well as the sacral side length of the screw trajectory, were all greater than those of S2AIS, with significant differences ( P<0.05). After simulating the implantation of S1AIS and S2AIS with a diameter of 6.5 mm in pelvic specimens, no screw penetration was observed. Both S1AIS and S2AIS with a diameter of 8.0 mm showed screw penetration, with S2AIS having a higher incidence of posterior lateral sacral cortical penetration (46.7%) than S1AIS (3.3%) ( P<0.05). The biomechanical test showed that the stiffness and maximum load of S2AIS were significantly lower than those of S1AIS ( P<0.05).
CONCLUSION
As a method to fix the sacroiliac joint, the S1AIS has a larger insertable range, a longer sacral side length of the screw trajectory, a lower incidence of posterior lateral cortical rupture of the sacrum, and a greater fixation strength than S2AIS. Therefore, the implantation safety and fixation stability of the S1AIS are superior to S2AIS, and a diameter less than 8.0 mm screws should be selected as S2AIS for Chinese people.
Humans
;
Bone Screws
;
Sacroiliac Joint/diagnostic imaging*
;
Male
;
Female
;
Sacrum/diagnostic imaging*
;
Fracture Fixation, Internal/instrumentation*
;
Ilium/diagnostic imaging*
;
Tomography, X-Ray Computed
;
Middle Aged
;
Adult
;
Printing, Three-Dimensional
;
Aged
6.Biomechanical characteristics and clinical application of three-dimensional printed osteotomy guide plate combined with Ilizarov technique in treatment of rigid clubfoot.
Wahafu PAERHATI ; Wei LIU ; Xue WANG ; Bo ZHAO ; Fei LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):994-1001
OBJECTIVE:
To explore the biomechanical characteristics and clinical application effects of three-dimensional (3D) printed osteotomy guide plate combined with Ilizarov technique in the treatment of rigid clubfoot.
METHODS:
A retrospective analysis was performed on the clinical data of 11 patients with rigid clubfoot who met the inclusion criteria and were admitted between January 2019 and December 2024. There were 6 males and 5 females, aged 21-60 years with an average of 43.2 years. Among them, 5 cases were untreated congenital rigid clubfoot, 4 cases were recurrent rigid clubfoot after previous treatment, and 2 cases were rigid clubfoot due to disease sequelae. All 11 patients first received slow distraction using Ilizarov technique combined with circular external fixator until the force lines of the foot and ankle joint were basically normal. Then, 1 male patient aged 24 years was selected, and CT scanning was used to obtain imaging data of the ankle joint and foot. A 3D finite element model was established and validated using the plantar stress distribution nephogram of the patient. After validation, the biomechanical changes of the tibiotalar joint under the same load were simulated after triple arthrodesis and fixation. The optimal correction angle of the hindfoot was determined to fabricate 3D-printed osteotomy guide plates, and all 11 patients underwent triple arthrodesis using these guide plates. The functional recovery was evaluated by comparing the American Orthopaedic Foot and Ankle Society (AOFAS) score, International Clubfoot Study Group (ICFSG) score, and 36-Item Short Form Survey (SF-36) score before and after operation.
RESULTS:
Finite element analysis showed that the maximum peak von Mises stress of the tibiotalar joint was at hindfoot varus 3° and the minimum at valgus 6°; the maximum peak von Mises stress of the 3 naviculocuneiform joints under various conditions appeared at lateral naviculocuneiform joint before operation, and the minimum appeared at lateral naviculocuneiform joint at neutral position 0°; the maximum peak von Mises stress of the 5 tarsometatarsal joints under various conditions appeared at the 2nd tarsometatarsal joint at hindfoot neutral position 0°, and the minimum appeared at the 1st tarsometatarsal joint at valgus 6°. Clinical application results showed that the characteristics of clubfoot deformity observed during operation were consistent with the preoperative 3D reconstruction model. All 11 patients were followed up 8-24 months with an average of 13.1 months. One patient had postoperative incision exudation, which healed after dressing change; the remaining patients had good incision healing. All patients achieved good healing of the osteotomy segments, with a healing time of 3-6 months and an average of 4.1 months. At last follow-up, the AOFAS score, SF-36 score, and ICFSG score significantly improved when compared with those before operation ( P<0.05).
CONCLUSION
The 3D-printed osteotomy guide plate combined with Ilizarov technique has favorable biomechanical advantages in the treatment of rigid clubfoot, with significant clinical application effects. It can effectively improve the foot function of patients and achieve precise and personalized treatment.
Humans
;
Clubfoot/diagnostic imaging*
;
Printing, Three-Dimensional
;
Male
;
Osteotomy/instrumentation*
;
Female
;
Ilizarov Technique/instrumentation*
;
Adult
;
Retrospective Studies
;
Biomechanical Phenomena
;
Middle Aged
;
Bone Plates
;
Young Adult
;
Finite Element Analysis
;
Treatment Outcome
;
Ankle Joint/physiopathology*
;
Tomography, X-Ray Computed
;
External Fixators
7.Measurement and clinical validation of safe distance for LC- Ⅱ screw placement using iliac oblique view.
Hongwei FU ; Ansu WANG ; Lin CHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(10):1304-1309
OBJECTIVE:
To define a safe distance range from the LC-Ⅱ screw trajectory to the apex of the greater sciatic notch based on pelvic CT measurements, and to clinically assess the feasibility of using this range under iliac oblique view combined with iliac tangential view fluoroscopy to guide screw insertion.
METHODS:
CT scans of 104 normal pelvises collected between January 2022 and February 2025 were analyzed. There were 52 males and 52 females, with a median age of 45.8 years (range, 19-76 years). The RadiAnt DICOM Viewer software was used to reconstruct coronal, sagittal, and axial sections of the potential LC-Ⅱ screw trajectory. The maximum safety distance (Dmax) and the optimal safety distance (Dopt) from this trajectory to the greater sciatic notch were measured on the coronal and sagittal views. A retrospective analysis was conducted on 21 patients with LC-Ⅱ type pelvic fractures treated with the LC-Ⅱ screws fixation. And the screws were placed within the pre-defined safe distance under guidance from the iliac oblique view and iliac tangential view. Postoperative CT scans were obtained to evaluate the accuracy of screw placement.
RESULTS:
Radiographic measurements from the 104 cases showed that Dmax ranged from 1.87 to 3.87 cm (mean, 2.79 cm), and Dopt ranged from 1.01 to 2.92 cm (mean, 1.84 cm). Both Dmax and Dopt were significantly greater in the males than in the females ( P>0.05). No significant difference was found between the left and right sides within the same gender ( P>0.05). All 21 patients successfully underwent fracture reduction and fixation, with a total of 23 LC-Ⅱscrews implanted. According to the Lonstein grading system, the screw placement accuracy was rated as excellent in 16 screws, good in 3, fair in 3, and poor in 1, with an excellent and good rate of 82.6%.
CONCLUSION
Utilizing a CT-defined safe distance range from the screw trajectory to the greater sciatic notch, and adhering to this range under iliac oblique view combined with iliac tangential view fluoroscopy, enables the accurate and precise placement of LC-Ⅱ screws.
Humans
;
Male
;
Female
;
Middle Aged
;
Bone Screws
;
Adult
;
Tomography, X-Ray Computed/methods*
;
Aged
;
Ilium/surgery*
;
Pelvic Bones/diagnostic imaging*
;
Fracture Fixation, Internal/instrumentation*
;
Retrospective Studies
;
Fluoroscopy
;
Fractures, Bone/diagnostic imaging*
;
Young Adult
8.Analysis of the Influence of Different Scanning Conditions of Medical Linear Accelerator CBCT on Image Quality.
Li LIU ; Chengwei YE ; Jianjun YUAN ; Yingui LUO ; Zhiyao LUO ; Wei ZENG ; Ling LI ; Huan LIU ; Yan LIU
Chinese Journal of Medical Instrumentation 2025;49(2):176-180
OBJECTIVE:
To investigate the influence of different scanning conditions on the image quality of medical electron accelerator cone-beam computed tomography (CBCT) and provide a reference for the selection of scanning conditions for different body parts. Methods Set different scanning conditions, the Catphan 503 phantom was scanned using CBCT parameters to analyze the influence of spatial resolution, noise, uniformity, spatial geometric accuracy, and low-contrast resolution on the image quality of CBCT.
RESULTS:
For the head, chest, and abdomen, with the increase in scanning parameter values, the noise value decreased by 47.4%, 26.1%, and 51.3% respectively, and the uniformity values decreased by 30.2%, 26.6%, and 47.9% respectively. The low-contrast resolution values decreased by 50.6%, 34.2%, and 12.0%. The influence of different scanning conditions on spatial geometric accuracy and spatial resolution is not significant.
CONCLUSION
Different scanning parameters have a certain influence on the image quality of medical electron accelerator CBCT. Lower scanning parameters can be selected based on individual patients to reduce the additional radiation dose, providing a reference for the safe application of CBCT image guidance in radiotherapy.
Cone-Beam Computed Tomography/instrumentation*
;
Phantoms, Imaging
;
Particle Accelerators
9.Advances in X-Ray Tube Technology for CT Systems:Key Component Innovation.
Haiyang ZHANG ; Zhiyong JI ; Ruiyao JIANG
Chinese Journal of Medical Instrumentation 2025;49(4):383-388
In this paper, the technical basis and latest progress of X-ray tube for CT systems are introduced, with emphasis on material innovation, superconducting technology, liquid metal bearing, low dose scanning and electron beam filtration. As the core component of CT equipment, the technological innovation of CT X-ray tubes significantly improves image quality, reduces radiation dose, improves efficiency, and extends the service life of the X-ray tubes. Domestic and foreign manufacturers have made remarkable progress in the field of CT X-ray tubes. Domestic manufacturers, such as the 12th Institute of CLP, have made important progress in the development of CT X-ray tubes, and successfully achieved independent research and development of high-end CT X-ray tubes. Foreign manufacturers such as Siemens, GE, Philips and other manufacturers continue to innovate in liquid metal bearings, superconducting technology, new targets and other aspects to maintain technology leadership. In the future, CT X-ray tubes will develop in the direction of personalization, intelligence, long life, miniaturization and portability, providing more accurate and low-risk technical support for medical image diagnosis.
Tomography, X-Ray Computed/instrumentation*
;
Equipment Design
10.Design and Experimental Study of Electrical Impedance Tomography System for Tumor Ablation Boundary Monitoring.
Wei WEI ; Lidong XING ; Xiaofei JIN ; Zhiyu QIAN ; Jingqi SONG ; Kairan WAN ; Haotian WANG
Chinese Journal of Medical Instrumentation 2025;49(4):444-452
The minimally invasive thermal ablation technology differs from traditional surgical operations, which requires auxiliary equipment to evaluate ablation results. However, the ultrasound and CT currently used in clinical practice have shortcomings such as artifacts and radiation. Therefore, this paper proposes a design for a minimally invasive thermal ablation evaluation system based on the principle of electrical impedance tomography technology to monitor the ablation range. At the same time, the innovative introduction of a programmable gain feedforward signal as the parameter signal of the multiplier demodulator in the electrical impedance tomography system design can effectively solve the problem of weak signals being submerged in noise and improve imaging accuracy. The system controls the amplitude of the excitation current signal and the acquisition / processing of boundary voltages via an STM32, uploads the collected data to an upper computer, and reconstructs the conductivity distribution using the Newton-Raphson algorithm to map the size of the ablation area. Experimental results show that the system can effectively reflect the size of the microwave ablation area. Under the same minimally invasive ablation parameters, the average imaging errors are 0.6 mm for the long diameter, 0.8 mm for the short diameter, and 1.75% for the axial ratio (long diameter / short diameter), demonstrating high consistency. This verifies the technical potential of electrical impedance tomography in minimally invasive thermal ablation.
Electric Impedance
;
Tomography/instrumentation*
;
Equipment Design

Result Analysis
Print
Save
E-mail